题目内容
【题目】已知函数是奇函数(其中)
(1)求实数m的值;
(2)已知关于x的方程在区间上有实数解,求实数k的取值范围;
(3)当时,的值域是,求实数n与a的值.
【答案】(1);(2);(3),.
【解析】
(1)由f(x)是奇函数,f(﹣x)=﹣f(x),结合对数的真数大于0求出m的值;
(2)由题意问题转化为求函数在x∈[2,6]上的值域,求导判断出单调性,进而求得值域,可得k的范围.
(3)先判定函数的单调性,进而由x时,f(x)的值域为(1,+∞),根据函数的单调性得出n与a的方程,从而求出n、a的值.
(1)∵f(x)是奇函数,
∴f(﹣x)=﹣f(x),
∴logalogaloga,
∴,
即1﹣m2x2=1﹣x2对一切x∈D都成立,
∴m2=1,m=±1,
由于0,∴m=﹣1;
(2)由(1)得,,∴
即,令,
则,
∴在区间上单调递减,当时,;当时,;所以,.
(3)由(1)得,,且
∵在与上单调递减
∵x∈(n,a﹣2),定义域D=(﹣∞,﹣1)∪(1,+∞),
①当n≥1时,则1≤n<a﹣2,即a>1+2,
∴f(x)在(n,a﹣2)上为减函数,值域为(1,+∞),
∴f(a﹣2)=1,
即a,
∴a3,或a1(不合题意,舍去),且n=1;
②当n<1时,则(n,a﹣2)(﹣∞,﹣1),
∴n<a﹣21,
即a<21,
且f(x)在(n,a﹣2)上的值域是(1,+∞);
∴f(a﹣2)=1,
即a,
解得a3(不合题意,舍去),或a1;
此时n=﹣1(舍去);
综上,a3,n=1.
【题目】某租车公司给出的财务报表如下:
年度 项目 | 2014年 (1-12月) | 2015年 (1-12月) | 2016年 (1-11月) |
接单量(单) | 14463272 | 40125125 | 60331996 |
油费(元) | 214301962 | 581305364 | 653214963 |
平均每单油费(元) | 14.82 | 14.49 | |
平均每单里程(公里) | 15 | 15 | |
每公里油耗(元) | 0.7 | 0.7 | 0.7 |
有投资者在研究上述报表时,发现租车公司有空驶情况,并给出空驶率的计算公式为.
(1)分别计算2014,2015年该公司的空驶率的值(精确到0.01%);
(2)2016年该公司加强了流程管理,利用租车软件,降低了空驶率并提高了平均每单里程,核算截止到11月30日,空驶率在2015年的基础上降低了20个百分点,问2016年前11个月的平均每单油费和平均每单里程分别为多少?(分别精确到0.01元和0.01公里).