题目内容
【题目】如图是的导函数的图象,对于下列四个判断,其中正确的判断是( ).
A.在上是增函数;
B.当时,取得极小值;
C.在上是增函数、在上是减函数;
D.当时,取得极大值.
【答案】BC
【解析】
这是一个图象题,考查了两个知识点:①导数的正负与函数单调性的关系,若在某个区间上,导数为正,则函数在这个区间上是增函数,若导数为负,则这个函数在这个区间上是减函数;②极值判断方法,在导数为零的点处左增右减取到极大值,左减右增取到极小值.
解:由图象可以看出,在,上导数小于零,故不对;左侧导数小于零,右侧导数大于零,所以是的极小值点,故对;
在,上导数大于零,在上导数小于零,故对;左右两侧导数的符号都为正,所以不是极值点,不对.
故选:BC.
练习册系列答案
相关题目
【题目】有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.
优秀 | 非优秀 | 总计 | |
甲班 | 10 | ||
乙班 | 30 | ||
总计 | 105 |
已知在全部105人中随机抽取1人为优秀的概率为.
(1)请完成上面的列联表;(把列联表自己画到答题卡上)
(2)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系”?
参考公式:
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 |