题目内容
【题目】传承传统文化再掀热潮,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏.将中学组和大学组的参赛选手按成绩分为优秀、良好、一般三个等级,随机从中抽取了100名选手进行调查,下面是根据调查结果绘制的选手等级人数的条形图.
(1)若将一般等级和良好等级合称为合格等级,根据已知条件完成下面的列联表,据此资料你是否有95%的把握认为选手成绩“优秀”与文化程度有关?
优秀 | 合格 | 合计 | |
大学组 | |||
中学组 | |||
合计 |
注:,其中.
0.10 | 0.05 | 0.005 | |
2.706 | 3.841 | 7.879 |
(2)若参赛选手共6万人,用频率估计概率,试估计其中优秀等级的选手人数.
(3)在优秀等级的选手中取6名,依次编号为1,2,3,4,5,6.在良好等级的选手中取6名,依次编号为1,2,3,4,5,6,在选出的6名优秀等级的选手中任取一名,记其编号为
【答案】(1)见解析;(2)4.5;(3)
【解析】试题分析:(1)由条形图可知列联表,利用公式求得的观测值,即可作出预测结果;
(2)由条形图知,所抽取的人中优秀等级有人,得到优秀率,用频率估计概率,得参赛选手中优秀等级的概率,即可求解所有参赛选手中优秀等级的选手人数;
(3)利用古典概型及其概率的计算公式,即可求解相应的概率.
试题解析:
(1)由条形图可知列联表如下:
优秀 | 合格 | 合计 | |
大学组 | 45 | 10 | 55 |
中学组 | 30 | 15 | 45 |
合计 | 75 | 25 | 100 |
∵的观测值,
∴没有95%的把握认为选物成绩“优秀”与文化程度有关.
(2)由条形图知,所抽取的100人中优秀等级有75人,故优秀率为,用频率估计概率,则参赛选手中优秀等级的概率是,∴所有参赛选手中优秀等级的选手人数约为(万).
(3)从1,2,3,4,5,6中取,从1,2,3,4,5,6中取,共有36种组合,要使方程组有唯一一组实数解,则,共33种组合,故所求概率.
【题目】在平面直角坐标系中,曲线的参数方程为(为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程为.
(1)求曲线的普通方程和直线的倾斜角;
(2)设点,直线和曲线交于两点,求的值.
【题目】中国政府实施“互联网+”战略以来,手机作为客户端越来越为人们所青睐,通过手机实现衣食住行消费已经成为一种主要的消费方式,“一机在手,走遍天下”的时代已经到来。在某著名的夜市,随机调查了100名顾客购物时使用手机支付的情况,得到如下的列联表,已知其中从使用手机支付的人群中随机抽取1人,抽到青年的概率为.
(1)根据已知条件完成列联表,并根据此资料判断是否有的把握认为“市场购物用手机支付与年龄有关”?
(2)现采用分层抽样从这100名顾客中按照“使用手机支付”和“不使用手机支付”中抽取得到一个容量为5的样本,设事件为“从这个样本中任选2人,这2人中至少有1人是不使用手机支付的”,求事件发生的概率?
列联表
青年 | 中老年 | 合计 | |
使用手机支付 | 60 | ||
不使用手机支付 | 24 | ||
合计 | 100 |
附: