题目内容
【题目】函数是数学中重要的概念之一,同学们在初三、高一分别学习过,也知晓其发展过程.1692年,德国数学家莱布尼茨首次使用function这个词,1734年瑞士数学家欧拉首次使用符号f(x)表示函数.1859年我国清代数学家李善兰将function译作函数,“函”意味着信件,巧妙地揭示了对应关系.密码学中的加密和解密其实就是函数与反函数.对自变量恰当地赋值是处理函数问题,尤其是处理抽象函数问题的常用方法之一.请你解答下列问题.
已知函数f(x)满足:对任意的整数a,b均有f(a+b)=f(a) +f(b)+ab+2,且f(-2)=-3.求f(96)的值.
【答案】4750
【解析】
在f(a+b)=f(a)+f(b)+ab+2中,令a=b=a,得
f(0)=f(0)+f(0)+0+2,于是f(0)=-2.
在f(a+b)=f(a)+f(b)+ab+2中,令a=2,b=-2,得f(0)=f(2)+f(-2)-4+2.
∴-2=f(2)_3-4+2,f(2)=3.
在f(a+b)=f(a)+f(b)+ab+2中,令a=n-2,b=2,得
f(n)=f(n-2)+f(2)+2(n-2)+2=f(n-2)+3+2(n-2)+2=f(n-2)+2n+l.
∴f(n)-f(n-2)=2n+1.
∴f(96)-f(94)=2×96+1,
f(94)-f(92)=2×94+1,
f(94)-f(92)=2×94+1,
……
上述等式左右两边分别相加,得f(96)-f(2)=2(96+94+…+4)+47.
∴.
练习册系列答案
相关题目