题目内容
20.如题图,已知函数$f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<\frac{π}{2})$的图象与y的交点为(0,1),它在y轴右侧的第一个最高点和第一个最低点之间的距离为2$\sqrt{4+{π^2}}$.(Ⅰ)求f(x)的解析式;
(Ⅱ)在△ABC中,内角A、B、C所对的边长分别为a、b、c,若f(2B+$\frac{2π}{3}$)=$\frac{2}{3}$,b=$\sqrt{3}$,求$\overrightarrow{BA}•\overrightarrow{BC}$的最大值.
分析 (Ⅰ)根据三角函数图象确定A,ω和φ的值即可求f(x)的解析式;
(Ⅱ)求出sinB和cosB的值,结合向量数量积以及余弦定理进行求解即可.
解答 解:(Ⅰ)由图象可知A=2,${4}^{2}+(\frac{T}{2})^{2}$=(2$\sqrt{4+{π^2}}$)2,
即T=4π=$\frac{2π}{ω}$,
解得ω=$\frac{1}{2}$,
即f(x)=2sin($\frac{1}{2}x$+φ),
∵f(0)=1,∴2sinφ=1,
即sinφ=$\frac{1}{2}$,
∵|φ|$<\frac{π}{2}$,∴φ=$\frac{π}{6}$,
即f(x)=2sin($\frac{1}{2}x$+$\frac{π}{6}$),即f(x)的解析式为f(x)=2sin($\frac{1}{2}x$+$\frac{π}{6}$);
(Ⅱ)由于f(2B+$\frac{2π}{3}$)=$\frac{2}{3}$,即cosB=$\frac{1}{3}$,sinB=$\frac{2\sqrt{2}}{3}$.
又cosB=$\frac{1}{3}=\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{{a}^{2}+{c}^{2}-3}{2ac}≥\frac{2ac-3}{2ac}$,
即4ac≤9,ac≤$\frac{9}{4}$,当且仅当a=c取得号,
则$\overrightarrow{BA}•\overrightarrow{BC}$=accosB≤$\frac{9}{4}$×$\frac{1}{3}$=$\frac{3}{4}$,
即$\overrightarrow{BA}•\overrightarrow{BC}$的最大值为$\frac{9}{4}$.
点评 本题主要考查三角函数解析式的求解以及向量数量积的计算,利用余弦定理进行求解是解决本题的关键.
年产量/亩 | 年种植成本/亩 | 每吨售价 | |
黄瓜 | 4吨 | 1.2万元 | 0.55万元 |
韭菜 | 6吨 | 0.9万元 | 0.3万元 |
A. | $\frac{π}{4}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{8}$ | D. | $\frac{π}{10}$ |
A. | 17 | B. | $\frac{52}{3}$ | C. | $\frac{55}{3}$ | D. | 18 |
A. | log2$\frac{3}{2}$ | B. | log23 | C. | 1 | D. | 不存在 |