题目内容
【题目】已知函数f(x)=aex﹣2x﹣2a,且a∈[1,2],设函数f(x)在区间[0,ln2]上的最小值为m,则m的取值范围是( )
A.[﹣2,﹣2ln2]
B.[﹣2,﹣ ]
C.[﹣2ln2,﹣1]
D.[﹣1,﹣ ]
【答案】A
【解析】解:构造函数g(a)=(ex﹣2)a﹣2x是关于a的一次函数,
∵x∈[0,ln2],∴ex﹣2<0,即y=g(a)是减函数,
∵a∈[1,2],∴f(x)min=2(ex﹣2)﹣2x,设M(x)=2(ex﹣2)﹣2x,
则M′(x)=2ex﹣2,∵x∈[0,ln2],
∴M′(x)≥0,则M(x)在[0,ln2]上递增,
∴M(x)min=M(0)=2,M(x)max=M(ln2)=﹣2ln2,
m的取值范围是[﹣2,﹣2ln2],
故选:A.
构造函数g(a),由于x的范围可得出g(a)为减函数,根据a的范围,求出f(x)的最小值,设M(x)为f(x)的最大值,求出M(x)的导数,根据单调性求出m的范围.
【题目】某种产品的质量以其质量指标衡量,并依据质量指标值划分等级如表:
质量指标值m | m<185 | 185≤m<205 | M≥205 |
等级 | 三等品 | 二等品 | 一等品 |
从某企业生产的这种产品中抽取200件,检测后得到如下的频率分布直方图:
(1)根据以上抽样调查的数据,能否认为该企业生产这种产品符合“一、二等品至少要占到全部产品的92%的规定”?
(2)在样本中,按产品等级用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;
(3)该企业为提高产品的质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值X近似满足X~N(218,140),则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?