题目内容

【题目】已知数列{an}满足a1+2a2+…+nan=(n﹣1)2n+1+2,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn= ,Tn=b1+b2+…+bn , 求证:对任意的n∈N* , Tn

【答案】解:(I)a1+2a2+…+nan=(n﹣1)2n+1+2,n∈N*,n>1时,a1+2a2+…+(n﹣1)an﹣1=(n﹣2)2n+2,

∴nan=(n﹣1)2n+1﹣(n﹣2)2n,化为:an=2n

当n=1时,a1=2,上式也成立.

∴an=2n

(II)证明:bn= = =

∴Tn=b1+b2+…+bn= + +…+

=

∴对任意的n∈N*,Tn


【解析】(1)当n>1时,a1+2a2+…+nan=(n﹣1)2n+1+2,a1+2a2+…+(n﹣1)an﹣1=(n﹣2)2n+2两式相减得到an=2n,当n=1时也满足其通项公式,故an=2n,(2)根据简单的对数运算得出bn的通项公式,再用裂项求出其前n项和,不难得出 Tn.
【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系,以及对数列的通项公式的理解,了解如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网