题目内容

(本小题满分14分)设函数f(x) = x2 + bln(x+1),

(1)若对定义域的任意x,都有f(x)≥f(1)成立,求实数b的值;

(2)若函数f(x)在定义域上是单调函数,求实数b的取值范围;

(3)若b = -1,,证明对任意的正整数n,不等式都成立

 

【答案】

 

(1)b= - 4

(2)

(3)略

【解析】解:(1)由x + 1>0得x> – 1∴f(x)的定义域为( - 1,+ ∞),

对x∈( - 1,+ ∞),都有f(x)≥f(1),

∴f(1)是函数f(x)的最小值,故有f/ (1) = 0,

解得b= - 4.……………………………………………………………………4分

(2)∵

又函数f(x)在定义域上是单调函数,

∴f/ (x) ≥0或f/(x)≤0在( - 1,+ ∞)上恒成立。

若f/ (x) ≥0,∵x + 1>0,∴2x2 +2x+b≥0在( - 1,+ ∞)上恒成立,

即b≥-2x2 -2x = 恒成立,由此得b≥;

若f/ (x) ≤0, ∵x + 1>0, ∴2x2 +2x+b≤0,即b≤-(2x2+2x)恒成立,

因-(2x2+2x) 在( - 1,+ ∞)上没有最小值,

∴不存在实数b使f(x) ≤0恒成立。

综上所述,实数b的取值范围是。………………………………8分

(3)当b= - 1时,函数f(x) = x2 - ln(x+1)

令函数h(x)=f(x) – x3 = x2 – ln(x+1) – x3,

则h/(x) = - 3x2 +2x -

∴当时,h/(x)<0所以函数h(x)在上是单调递减。

又h(0)=0,∴当时,恒有h(x) <h(0)=0,

即x2 – ln(x+1) <x3恒成立.

故当时,有f(x) <x3..

则有

  ∴,

故结论成立。………………………………………………………………14分

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网