题目内容
【题目】设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是( )
A.[﹣ , ]
B.[﹣2,2]
C.[﹣1,1]
D.[﹣4,4]
【答案】C
【解析】解:∵y2=8x,
∴Q(﹣2,0)(Q为准线与x轴的交点),设过Q点的直线l方程为y=k(x+2).
∵l与抛物线有公共点,
有解,
∴方程组
即k2x2+(4k2﹣8)x+4k2=0有解.
∴△=(4k2﹣8)2﹣16k4≥0,即k2≤1.
∴﹣1≤k≤1,
故选C.
【考点精析】根据题目的已知条件,利用直线的斜率的相关知识可以得到问题的答案,需要掌握一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是 k = tanα.
练习册系列答案
相关题目