题目内容

(本小题满分14分)

已知F1F2分别是椭圆+=1的左、右焦点,曲线C是以坐标原点为顶点,以F2为焦点的抛物线,自点F1引直线交曲线CPQ两个不同的交点,点P关于x轴的对称点记为M.设=λ.

(Ⅰ)求曲线C的方程;

(Ⅱ)证明:=-λ

(Ⅲ)若λ∈[2,3],求|PQ|的取值范围.

 

 

【答案】

解:(Ⅰ)∵椭圆+=1的右焦点F2的坐标为(1,0),

∴可设曲线C的方程为y2=2px.(p>0)

p=2.

曲线C的方程为y2=4x.                                   (3分)

(Ⅱ)设P(x1y1),Q(x2y2),M(x1,-y1).

λ

x1+1=λ(x2+1). ①

y1λy2, ②

yλ2y

y=4x1y=4x2.

x1λ2x2. ③

③代入①得λ2x2+1=λx2λ.

λx2(λ-1)=λ-1.

λ≠1,∴x2=,x1λ.

=(x1-1,-y1).

由②知,-y1=-λy2

=-λ(-1,y2),

=-λ.

=-λ.                                          (9分)

(Ⅲ)由(Ⅱ)知x2=,x1λ,得x1x2=1.

y·y=16x1x2=16.

y1y2>0,∴y1y2=4.

则|PQ|2=(x1x2)2+(y1y2)2

xxyy-2(x1x2y1y2)

=(λ+)2+4(λ+)-12

=(λ++2)2-16.

λ∈[2,3],∴λ+∈.

∴|PQ|2∈.

得|PQ|∈.    

【解析】略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网