题目内容

11.解不等式:
(1)$\sqrt{4x-3}$>1
(2)$\sqrt{4-x}$>a
(3)$\sqrt{4x-3}$-$\sqrt{x-3}$>0
(4)3x-4>$\sqrt{x-3}$
(5)$\sqrt{5-x}$>x-3
(6)$\sqrt{5-4x{-x}^{2}}$≥x
(7)$\sqrt{3x+1}$>$\sqrt{2x-1}$-1
(8)(x-3)(x+1)(x+2)≤0
(9)x(x-$\sqrt{3}$)(x+1)(x+2)≤0.

分析 (1)不等式即为$\left\{\begin{array}{l}{4x-3≥0}\\{4x-3>1}\end{array}\right.$,由一次不等式即可得到解集;
(2)对a讨论,注意4-x非负,运用平方,即可得到解集;
(3)移项平方,注意被开方数非负,即可得到解集;
(4)讨论3x-4的符号,注意被开方数非负,即可得到解集;
(5)讨论x-3的符号,注意被开方数非负,即可得到解集;
(6)讨论x的符号,注意运用二次不等式的解法,即可得到解集;
(7)移项平方,注意被开方数非负,即可得到解集;
(8)运用符号法,注意转化为一次不等式和二次不等式的解法,即可得到解集;
(9)运用等价变形为二次不等式的解法,即可得到解集.

解答 解:(1)不等式即为$\left\{\begin{array}{l}{4x-3≥0}\\{4x-3>1}\end{array}\right.$,即$\left\{\begin{array}{l}{x≥\frac{3}{4}}\\{x>1}\end{array}\right.$,解得x>1,即解集为(1,+∞);
(2)由x≤4,当a<0时,不等式解集为R,当a=0时,解集为(-∞,4);当a>0时,不等式即为4-x>a2
可得x<4-a2,即解集为(-∞,4-a2];
(3)不等式即为$\left\{\begin{array}{l}{4x-3≥0}\\{x-3≥0}\\{4x-3>x-3}\end{array}\right.$,即$\left\{\begin{array}{l}{x≥\frac{3}{4}}\\{x≥3}\\{x>0}\end{array}\right.$,即有x≥3,解集为[3,+∞);
(4)由x-3≥0,当3x-4≤0即x$≤\frac{4}{3}$时,不等式不成立;
当x>$\frac{4}{3}$时,(3x-4)2>x-3,解得x≥3,即解集为[3,+∞);
(5)由5-x≥0,可得x≤5,当x<3时,不等式成立;当x=3时,x<5;
当x>3时,不等式5-x>x2-6x+9,解得1<x<4,即为3<x<4,则不等式解集为(-∞,4);
(6)由5-4x-x2≥0,可得-5≤x≤1,当x≤0时,不等式解为-5≤x≤0;
当x>0时,不等式即为2x2+4x-5≤0,解得-1-$\frac{\sqrt{14}}{2}$≤x≤-1+$\frac{\sqrt{14}}{2}$,即有0<x≤-1+$\frac{\sqrt{14}}{2}$,
则解集为[-5,-1+$\frac{\sqrt{14}}{2}$];
(7)不等式即为$\left\{\begin{array}{l}{3x+1≥0}\\{2x-1≥0}\\{3x+2+2\sqrt{3x+1}>2x-1}\end{array}\right.$,即为$\left\{\begin{array}{l}{x≥-\frac{1}{3}}\\{x≥\frac{1}{2}}\\{x+3+2\sqrt{3x+1}>0}\end{array}\right.$,解得x≥$\frac{1}{2}$,则解集为[$\frac{1}{2}$,+∞);
(8)不等式即为$\left\{\begin{array}{l}{x-3≥0}\\{(x+1)(x+2)≤0}\end{array}\right.$或$\left\{\begin{array}{l}{x-3≤0}\\{(x+1)(x+2)≥0}\end{array}\right.$,即有$\left\{\begin{array}{l}{x≥3}\\{-2≤x≤-1}\end{array}\right.$或$\left\{\begin{array}{l}{x≤3}\\{x≥-1或x≤-2}\end{array}\right.$,
即有-1≤x≤3或x≤-2,则有解集为[-1,3]∪(-∞,-2];
(9)不等式即为$\left\{\begin{array}{l}{x(x-\sqrt{3})≥0}\\{(x+1)(x+2)≤0}\end{array}\right.$或$\left\{\begin{array}{l}{x(x-\sqrt{3})≤0}\\{(x+1)(x+2)≥0}\end{array}\right.$,即有$\left\{\begin{array}{l}{x≥\sqrt{3}或x≤0}\\{-2≤x≤-1}\end{array}\right.$或$\left\{\begin{array}{l}{0≤x≤\sqrt{3}}\\{x≥-1或x≤-2}\end{array}\right.$,
即有-2≤x≤-1或0≤x≤$\sqrt{3}$,则有解集为[-2,-1]∪[0,$\sqrt{3}$].

点评 本题考查不等式的解法,主要考查根式不等式和高次不等式的解法,注意运用等价变形和平方法,考查运算能力,属于中档题和易错题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网