题目内容

4.已知实数x,y满足x2+y2≤1,则|2x+y-4|+|6-x-3y|的最大值是15.

分析 由题意可得2x+y-4<0,6-x-3y>0,去绝对值后得到目标函数z=-3x-4y+10,然后结合圆心到直线的距离求得|2x+y-4|+|6-x-3y|的最大值.

解答 解:如图,

由x2+y2≤1,
可得2x+y-4<0,6-x-3y>0,
则|2x+y-4|+|6-x-3y|=-2x-y+4+6-x-3y=-3x-4y+10,
令z=-3x-4y+10,得$y=-\frac{3}{4}x-\frac{z}{4}+\frac{5}{2}$,
如图,

要使z=-3x-4y+10最大,则直线$y=-\frac{3}{4}x-\frac{z}{4}+\frac{5}{2}$在y轴上的截距最小,
由z=-3x-4y+10,得3x+4y+z-10=0.
则$\frac{|z-10|}{5}=1$,即z=15或z=5.
由题意可得z的最大值为15.
故答案为:15.

点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,考查了数学转化思想方法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网