题目内容

已知椭圆
x2
a2
+
y2
b2
=1(a>0,b>0)
的左焦点F为圆x2+y2+2x=0的圆心,且椭圆上的点到点F的距离最小值为
2
-1

(I)求椭圆方程;
(II)已知经过点F的动直线l与椭圆交于不同的两点A、B,点M(-
5
4
,0
),证明:
MA
MB
为定值.
分析:(I)先求出圆心坐标,再根据题意求出a、b,得椭圆的标准方程.
(II)根据直线的斜率是否存在,分情况设直线方程,再与椭圆方程联立方程组,设出交点坐标,结合韦达定理根与系数的关系,利用向量坐标运算验证.
解答:解:(I)∵圆x2+y2+2x=0的圆心为(-1,0),依据题意c=1,a-c=
2
-1,∴a=
2

∴椭圆的标准方程是:
x2
2
+y2=1;
(II)①当直线L与x轴垂直时,L的方程是:x=-1,
 得A(-1,
2
2
),B(-1,-
2
2
),
MA
MB
=(
1
4
2
2
)•(
1
4
,-
2
2
)=-
7
16


②当直线L与x轴不垂直时,设直线L的方程为 y=k(x+1)
y=k(x+1)
x2
2
+y2=1
⇒(1+2k2)x2+4k2x+2k2-2=0,
 设A(x1,y1),B(x2,y2),则x1x2=
2k2-2
1+2k2
,x1+x2=-
4k2
1+2k2

MA
MB 
=(x1+
5
4
,y1)•(x2+
5
4
,y2)=x1x2+
5
4
(x1+x2)+
25
16
+k2(x1x2+x1+x2+1)
=(1+k2)x1x2+(k2+
5
4
)(x1+x2)+k2+
25
16
=(1+k2)(
2k2-2
1+2k2
)+(k2+
5
4
)(-
4k2
1+2k2
)+k2+
25
16

=
-4k2-2
1+2k2
+
25
16
=-2+
25
16
=-
7
16

综上
MA
MB
为定值-
7
16
点评:本题考查直线与圆锥曲线的综合问题及向量坐标运算.根据韦达定理,巧妙利用根与系数的关系设而不求,是解决本类问题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网