题目内容
(本小题满分5分)直线a,b相交于O,且a,b成角600, 过O与a,b都成600角的直线有( )
A.1条 | B.2条 | C.3条 | D.4条 |
C
考点:
分析:根据等角定理可知将经过空间任意一点O/,作直线a/、b/,并使a/∥a、b/∥b,,则a/与b/相交所成的角为600或1200,从而在a/与b/相交所成的平面内,存在1200的角的平分线满足题意,又当射影为600角的平分线时存在两条,得到结论.
解答:解:经过空间任意一点O/,作直线a/、b/,并使a/∥a、b/∥b,,则a/与b/相交所成的角为600或1200,因此,在a/与b/相交所成的平面内,存在1200的角的平分线满足题意,又当射影为600角的平分线时存在两条,故过点O/与a、b都成600角的直线有3条
故答案为:C
点评:空间问题平面化是研究立体几何的常用方法,要注意想象能力的培养,属于基础题.
分析:根据等角定理可知将经过空间任意一点O/,作直线a/、b/,并使a/∥a、b/∥b,,则a/与b/相交所成的角为600或1200,从而在a/与b/相交所成的平面内,存在1200的角的平分线满足题意,又当射影为600角的平分线时存在两条,得到结论.
解答:解:经过空间任意一点O/,作直线a/、b/,并使a/∥a、b/∥b,,则a/与b/相交所成的角为600或1200,因此,在a/与b/相交所成的平面内,存在1200的角的平分线满足题意,又当射影为600角的平分线时存在两条,故过点O/与a、b都成600角的直线有3条
故答案为:C
点评:空间问题平面化是研究立体几何的常用方法,要注意想象能力的培养,属于基础题.
练习册系列答案
相关题目