题目内容
已知数列{an}满足条件;a1=1,a2=r(r>0)且{anan+1}是公比为q(q>0)的等比数列.
(1)求出使不等式anan+1+an+1an+2>an+2an+3(n∈N)成立的q的取值范围;
(2)设bn=a2n-1+a2nn (n∈N),求bn的表达式;
(3)设{Sn}是数列{bn}的前n项和,求Sn和
;
(4)设r=219.2-1,q=
,求数列{
}的最大值与最小值.
(1)求出使不等式anan+1+an+1an+2>an+2an+3(n∈N)成立的q的取值范围;
(2)设bn=a2n-1+a2nn (n∈N),求bn的表达式;
(3)设{Sn}是数列{bn}的前n项和,求Sn和
lim |
n→∞ |
1 |
Sn |
(4)设r=219.2-1,q=
1 |
2 |
log2bn+1 |
log2bn |
分析:(1)由anan+1=a1a1qn-1=rqn-1,anan+1+an+1an+2>an+2an+3,知rqn-1+rqn>rqn+1+q>q2 即:q2-q-1<0∴
(1-
)<q<
(1+
),由此能求出0<q<
.
(2)由数列{anan+1}是公比为q的等比数列,知
=
=q,由此能求出bn=qn-1+rqn-1=(1+r)qn-1.
(3)当q=1时,
=
=0;当0q>1时,
=
=0.由此能求出
.
(4)由bn=(1+r)qn-1,知
=
=1+
,由此能求出数列{
}的最大值和最小值.
1 |
2 |
5 |
1 |
2 |
5 |
1+
| ||
2 |
(2)由数列{anan+1}是公比为q的等比数列,知
an+1an+2 |
anan+1 |
an+2 |
an |
(3)当q=1时,
lim |
n→∞ |
1 |
Sn |
lim |
n→∞ |
1 |
n(1+r) |
lim |
n→∞ |
1 |
Sn |
lim |
n→∞ |
1-q |
(1+r)(1-qn) |
lim |
n→∞ |
1 |
Sn |
(4)由bn=(1+r)qn-1,知
log2bn+1 |
log2bn |
log2(1+r)+nlog2q |
log2(1+r)+(n-1)log2q |
1 |
n-20.2 |
log2bn+1 |
log2bn |
解答:解:(1)∵数列{an}满足条件:a1=1,a2=r,
且数列{anan+1}是公比为q的等比数列,
∴q≠0,r≠0,且anan+1=a1a1qn-1=rqn-1,
∵anan+1+an+1an+2>an+2an+3,
∴rqn-1+rqn>rqn+1+q>q2
即:q2-q-1<0,
∴
(1-
)<q<
(1+
),
∵q>0,
∴0<q<
.
(2)∵数列{anan+1}是公比为q的等比数列,
∴
=
=q,
∵a1=1,
∴当n=2k-1时,an=qk-1
∵a2=r,
∴当n=2k时,an=rqk-1.
∵bn=a2n-1+a2n(n∈N),
∴bn=qn-1+rqn-1=(1+r)qn-1.
(3)当q=1时,Sn=n(1+r),
=
=0;
当0q>1时,Sn=
=
=0.
∴
=
.
(4)∵bn=(1+r)qn-1,
∴
=
=1+
,
记Cn=
,
当n-20.2>0,即n>21,n∈N+时,Cn随n的增大而减小,
∴1<Cn≤C21=1+
=
.
当n-20.2<0,即n≤20,n∈N+时,Cn随n的增大而减小,
∴1>Cn≥C20=1+
=-4.
综上所述,对任意的自然数n,有C20≤Cn≤C21,
∴数列{
}中,n=21时,取最大值
,n=20时,取最小值-4.
且数列{anan+1}是公比为q的等比数列,
∴q≠0,r≠0,且anan+1=a1a1qn-1=rqn-1,
∵anan+1+an+1an+2>an+2an+3,
∴rqn-1+rqn>rqn+1+q>q2
即:q2-q-1<0,
∴
1 |
2 |
5 |
1 |
2 |
5 |
∵q>0,
∴0<q<
1+
| ||
2 |
(2)∵数列{anan+1}是公比为q的等比数列,
∴
an+1an+2 |
anan+1 |
an+2 |
an |
∵a1=1,
∴当n=2k-1时,an=qk-1
∵a2=r,
∴当n=2k时,an=rqk-1.
∵bn=a2n-1+a2n(n∈N),
∴bn=qn-1+rqn-1=(1+r)qn-1.
(3)当q=1时,Sn=n(1+r),
lim |
n→∞ |
1 |
Sn |
lim |
n→∞ |
1 |
n(1+r) |
当0q>1时,Sn=
(1+r)(1-qn) |
1-q |
lim |
n→∞ |
1 |
Sn |
lim |
n→∞ |
1-q |
(1+r)(1-qn) |
∴
lim |
n→∞ |
1 |
Sn |
|
(4)∵bn=(1+r)qn-1,
∴
log2bn+1 |
log2bn |
log2(1+r)+nlog2q |
log2(1+r)+(n-1)log2q |
1 |
n-20.2 |
记Cn=
log2bn+1 |
log2bn |
当n-20.2>0,即n>21,n∈N+时,Cn随n的增大而减小,
∴1<Cn≤C21=1+
1 |
21-20.2 |
9 |
4 |
当n-20.2<0,即n≤20,n∈N+时,Cn随n的增大而减小,
∴1>Cn≥C20=1+
1 |
20-20.2 |
综上所述,对任意的自然数n,有C20≤Cn≤C21,
∴数列{
log2bn+1 |
log2bn |
9 |
4 |
点评:本题考查数列的综合应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关题目