题目内容
【题目】已知向量,,,,函数,的最小正周期为.
(1)求的单调增区间;
(2)方程;在上有且只有一个解,求实数n的取值范围;
(3)是否存在实数m满足对任意x1∈[-1,1],都存在x2∈R,使得++m(-)+1>f(x2)成立.若存在,求m的取值范围;若不存在,说明理由.
【答案】(1),(2)或(3)存在,且m取值范围为
【解析】
(1)函数,的最小正周期为.可得,即可求解的单调增区间.
(2)根据x在上求解的值域,即可求解实数n的取值范围;
(3)由题意,求解的最小值,利用换元法求解的最小值,即可求解m的范围.
(1)函数f(x)1=2sin2(ωx)cos(2ωx)﹣1
=sin(2ωx)cos(2ωx)
=2sin(2ωx)
∵f(x)的最小正周期为π.ω>0
∴,
∴ω=1.
那么f(x)的解析式f(x)=2sin(2x)
令2x,k∈Z
得:x
∴f(x)的单调增区间为[,],k∈Z.
(2)方程f(x)﹣2n+1=0;在[0,]上有且只有一个解,
转化为函数y=f(x)+1与函数y=2n只有一个交点.
∵x在[0,]上,
∴(2x)
那么函数y=f(x)+1=2sin(2x)+1的值域为[,2],结合图象可知
函数y=f(x)+1与函数y=2n只有一个交点.
那么2n<1或2n=2,
可得或n=1.
(3)由(1)可知f(x)=2sin(2x)
∴f(x2)min=﹣2.
实数m满足对任意x1∈[﹣1,1],都存在x2∈R,
使得m()+1>f(x2)成立.
即m()+1>﹣2成立
令ym()+1
设t,那么()2+2=t2+2
∵x1∈[﹣1,1],
∴t∈[,],
可得t2+mt+5>0在t∈[,]上成立.
令g(t)=t2+mt+5>0,
其对称轴t
∵t∈[,]上,
∴①当时,即m≥3时,g(t)min=g(),解得;
②当,即﹣3<m<3时,g(t)min=g()0,解得﹣3<m<3;
③当,即m≤﹣3时,g(t)min=g()0,解得m≤﹣3;
综上可得,存在m,可知m的取值范围是(,).
【题目】“双十一网购狂欢节”源于淘宝商城(天猫)2009年11月11 日举办的促销活动,当时参与的商家数量和促销力度均有限,但营业额远超预想的效果,于是11月11日成为天猫举办大规模促销活动的固定日期.如今,中国的“双十一”已经从一个节日变成了全民狂欢的“电商购物日”.某淘宝电商分析近8年“双十一”期间的宣传费用(单位:万元)和利润(单位:十万元)之间的关系,得到下列数据:
2 | 3 | 4 | 5 | 6 | 8 | 9 | 11 | |
1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
(1)请用相关系数说明与之间是否存在线性相关关系(当时,说明与之间具有线性相关关系);
(2)根据(1)的判断结果,建立与之间的回归方程,并预测当时,对应的利润为多少(精确到0.1).
附参考公式:回归方程中中和最小二乘估计分别为
,相关系数
参考数据:
.