题目内容
【题目】已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是 , 半径是 .
【答案】(﹣2,﹣4);5
【解析】解:∵方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,
∴a2=a+2≠0,解得a=﹣1或a=2.
当a=﹣1时,方程化为x2+y2+4x+8y﹣5=0,
配方得(x+2)2+(y+4)2=25,所得圆的圆心坐标为(﹣2,﹣4),半径为5;
当a=2时,方程化为 ,此时 ,方程不表示圆,
所以答案是:(﹣2,﹣4),5.
【考点精析】关于本题考查的圆的一般方程,需要了解圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0.②没有xy这样的二次项;(2)圆的一般方程中有三个特定的系数D、E、F,因之只要求出这三个系数,圆的方程就确定了;(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显才能得出正确答案.
练习册系列答案
相关题目
【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价x(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
销量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)求回归直线方程=bx+a;(其中,,,,);
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)