题目内容

【题目】双曲线E)的左、右焦点分别为,已知点为抛物线C的焦点,且到双曲线E的一条渐近线的距离为,又点P为双曲线E上一点,满足.

1)双曲线的标准方程为______

2的内切圆半径与外接圆半径之比为______.

【答案】

【解析】

根据抛物线方程可求得焦点坐标,由到其双曲线的渐近线的距离可求得再由双曲线中的关系即可求得双曲线标准方程;设点P在双曲线的右支上,,则,根据余弦定理求得,进而结合双曲线中焦点三角形面积公式求得内切圆半径,由正弦定理求得外接圆半径,即可求得的内切圆半径与外接圆半径之比.

到其双曲线的渐近线的距离为,而抛物线的焦点

则双曲线的标准方程为

设点P在双曲线的右支上,,则

则由余弦定理可得

解得(舍去),

的内切圆和外接圆的半径分别为rR

解得

而由正弦定理可得

所以.

故答案为:.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网