题目内容
1.(1)计算:log535+2log${\;}_{\frac{1}{2}}$$\sqrt{2}$-log5$\frac{1}{50}$-log514.(2)化简:(0.027)${\;}^{-\frac{1}{3}}$-(-$\frac{1}{6}$)-2+2560.75-|-3|-1+(-5.55)0-10(2-$\sqrt{3}$)-1.
分析 (1)根据对数的运算性质和log55=l进行化简求值;
(2)根据指数的运算性质进行化简求值即可.
解答 解析:(1)原式=log535+log550-log514+2log${\;}_{\frac{1}{2}}$2${\;}^{\frac{1}{2}}$
=log5$\frac{35×50}{14}$+log${\;}_{\frac{1}{2}}$2=log553-1=2…(6分)
(2)(0.027)-$\frac{1}{3}$-${(-\frac{1}{6})}^{-2}$+2560.75-|-3|-1+(-5.55)0-10(2-$\sqrt{3}$)-1
=[(0.3)3]-$\frac{1}{3}$-(-1)-2(6-1)-2+$({4}^{4})^{\frac{3}{4}}$-3-1+1-$\frac{10}{2-\sqrt{3}}$
=$(\frac{3}{10})^{-1}$-36+43-$\frac{1}{3}$+1-$\frac{10(2+\sqrt{3})}{4-3}$
=$\frac{10}{3}$-$\frac{1}{3}$+29-20-10$\sqrt{3}$=12-10$\sqrt{3}$…(12分)
点评 本题考查对数、指数的运算性质的应用,熟练掌握对数、指数的四则运算法则是解题的关键,考查化简、计算能力.
练习册系列答案
相关题目
16.已知等差数列{an}满足,a2+a3+a6+a9+a10=25,则a5+a7为( )
A. | 5 | B. | 10 | C. | 15 | D. | 不确定 |
13.△ABC的顶点A(3,4),B(6,0),且∠A的内角平分线AT所在的直线方程为7x-y-17=0,则边AC所在的直线方程是( )
A. | x-2y+5=0 | B. | 2x-3y+6=0 | C. | 3x-4y+7=0 | D. | 4x-5y+8=0 |
1.函数f(x)=x2-ln2x的单调递减区间是( )
A. | (0,$\frac{\sqrt{2}}{2}$] | B. | [$\frac{\sqrt{2}}{2}$,+∞) | C. | (-∞,-$\frac{\sqrt{2}}{2}$],(0,$\frac{\sqrt{2}}{2}$) | D. | [-$\frac{\sqrt{2}}{2}$,0),(0,$\frac{\sqrt{2}}{2}$) |