题目内容
【题目】已知函数,.
(1)求证:在区间上无零点;
(2)求证:有且仅有2个零点.
【答案】(1)证明见解析;(2)证明见解析.
【解析】
(1)求出,再求出函数的单调区间,从而分析其图像与轴无交点即可.
(2)显然是函数的零点,再分析在上和在上无零点,在上有一个零点,从而得证.
(1),.
当时,;当时,,
所以在上单调递增,在上单调递减.
而,,
所以当时,,
所以在区间上无零点.
(2)的定义域为.
①当时,,,
所以,从而在上无零点.
②当时,,从而是的一个零点.
③当时,由(1)知,所以,又,
所以,从而在上无零点.
④当时,,,
所以在上单调递减.
而,,从而在上有唯一零点.
⑤当时,,所以,从而在上无零点.
综上,有且仅有2个零点.
【题目】随着“互联网+交通”模式的迅猛发展,“共享自行车”在很多城市相继出现。某运营公司为了了解某地区用户对其所提供的服务的满意度,随机调查了40个用户,得到用户的满意度评分如下:
用户编号 | 评分 | 用户编号 | 评分 | 用户编号 | 评分 | 用户编号 | 评分 | |||
1 2 3 4 5 6 7 8 9 10 | 78 73 81 92 95 85 79 84 63 86 | 11 12 13 14 15 16 17 18 19 20 | 88 86 95 76 97 78 88 82 76 89 | 21 22 23 24 25 26 27 28 29 30 | 79 83 72 74 91 66 80 83 74 82 | 31 32 33 34 35 36 37 38 39 40 | 93 78 75 81 84 77 81 76 85 89 |
用系统抽样法从40名用户中抽取容量为10的样本,且在第一分段里随机抽到的评分数据为92.
(1)请你列出抽到的10个样本的评分数据;
(2)计算所抽到的10个样本的均值和方差;
(3)在(2)条件下,若用户的满意度评分在之间,则满意度等级为“级”。试应用样本估计总体的思想,根据所抽到的10个样本,估计该地区满意度等级为“级”的用户所占的百分比是多少?
(参考数据:)