题目内容
【题目】如图,四边形ABCD、ADEF为正方形,G,H是DF,FC的中点.
(1)求证:GH∥平面CDE;
(2)求证:BC⊥平面CDE.
【答案】
(1)证明:∵G,H是DF,FC的中点.
∴GH∥CD,
又GH平面CDE,CD平面CDE,
∴GH∥平面CDE
(2)证明:∵四边形ABCD、ADEF为正方形,
∴DE⊥AD,CD⊥AD,BC∥AD.
又DE平面CDE,CD平面CDE,CD∩DE=D,
∴AD⊥平面CDE,
又BC∥AD,
∴BC⊥平面CDE
【解析】(1)由中位线定理得出GH∥CD,故GH∥平面CDE;(2)由AD⊥CD,AD⊥DE得出AD⊥平面CDE,而BC∥AD,故BC⊥平面CDE.
【考点精析】本题主要考查了直线与平面平行的判定和直线与平面垂直的判定的相关知识点,需要掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行;一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想才能正确解答此题.
练习册系列答案
相关题目