题目内容

【题目】已知M为圆Cx2y24x14y450上任意一点,且点Q(-2,3).

1)求|MQ|的最大值和最小值;

2)若Mmn),求的最大值和最小值

【答案】1622)最大值为2,最小值为2

【解析】

试题(1)求圆上的点到定点的距离最值,首先求圆心到直线的距离,再此基础上加减半径得到距离的最大值和最小值;(2看作两点连线的斜率,结合图形可知斜率的最值为直线与圆相切时的切线斜率

试题解析:(1)由Cx2y24x14y450可得(x22+(y728

圆心C的坐标为(2,7),半径r2

|QC|4∴|MQ|max426

|MQ|min422

2)可知表示直线MQ的斜率,设直线MQ的方程为y3kx2),

kxy2k30,则k.由直线MQ与圆C有交点,

所以≤2.可得2≤k≤2

所以的最大值为2,最小值为2

练习册系列答案
相关题目

【题目】随着人民生活水平的日益提高,某小区居民拥有私家车的数量与日俱增.由于该小区建成时间较早,没有配套建造地下停车场,小区内无序停放的车辆造成了交通的拥堵.该小区的物业公司统计了近五年小区登记在册的私家车数量(累计值,如124表示2016年小区登记在册的所有车辆数,其余意义相同),得到如下数据:

编号

1

2

3

4

5

年份

2014

2015

2016

2017

2018

数量(单位:辆)

34

95

124

181

216

(1)若私家车的数量与年份编号满足线性相关关系,求关于的线性回归方程,并预测2020年该小区的私家车数量;

(2)小区于2018年底完成了基础设施改造,划设了120个停车位,为解决小区车辆乱停乱放的问题,加强小区管理,物业公司决定禁止无车位的车辆进入小区,由于车位有限,物业公司决定在2019年度采用网络竞拍的方式将车位对业主出租,租期一年,竞拍方案如下:

①截至2018年已登记在册的私家车业主拥有竞拍资格;

②每车至多申请一个车位,由车主在竞拍网站上提出申请并给出自己的报价;

③根据物价部门的规定,竞价不得超过1200元;

④申请阶段截止后,将所有申请的业主报价自高到低排列,排在前120位的业主以其报价成交;

⑤若最后出现并列的报价,则以提出申请的时间在前的业主成交,为预测本:次竞拍的成交最低价,物业公司随机抽取了有竞拍资格的40位业主进行竞拍意向的调查,统计了他们的拟报竞价,得到如下频率分布直方图:

(ⅰ)求所抽取的业主中有意向竞拍报价不低于1000元的人数;

(ⅱ)如果所有符合条件的车主均参与竞拍,利用样木估计总体的思想,请你据此预测至少需要报价多少元才能竞拍车位成功?(精确到整数)

参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网