题目内容
12.不等式(2+x)(x-3)<0的解集为( )A. | (-∞,-2)∪(3,+∞) | B. | (-2,3) | C. | [-2,3] | D. | (-3,2) |
分析 直接利用二次不等式的复数求解即可.
解答 解:不等式(2+x)(x-3)<0,化为(x+2)(x-3)<0,不等式的解集为:x∈(-2,3).
故选:B.
点评 本题考查二次不等式的解法,基本知识的考查.
练习册系列答案
相关题目
2.各项均为实数的等比数列{an}中,a1=1,a3=2,则a5=( )
A. | 4 | B. | $\sqrt{2}$ | C. | ±4 | D. | ±$\sqrt{2}$ |
3.函数值tan224°,sin136°,cos310°的大小关系是( )
A. | cos310°<sin136°<tan224° | B. | sin136°<cos310°<tan224° | ||
C. | cos310°<tan224°<sin136° | D. | tan224°<sin136°<cos310° |
20.若f(n)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{2n+1}$(n∈N*),则当n=2时,f(n)是( )
A. | 1+$\frac{1}{2}$ | B. | $\frac{1}{5}$ | C. | 1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+$\frac{1}{5}$ | D. | 非以上答案 |
17.“ALS冰桶挑战赛”是一项社交网络上发起的筹款活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战与不接受挑战是等可能的,且互不影响.
(Ⅰ)若某参与者接受挑战后,对其他3个人发出邀请,则这3个人中恰有2个人接受挑战的概率是多少?
(Ⅱ)为了解冰桶挑战赛与受邀者的性别是否有关,某调查机构进行了随机抽样调查,调查得到如下2×2列联表:
根据表中数据,是否有99%的把握认为“冰桶挑战赛与受邀者的性别有关”?
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
(Ⅰ)若某参与者接受挑战后,对其他3个人发出邀请,则这3个人中恰有2个人接受挑战的概率是多少?
(Ⅱ)为了解冰桶挑战赛与受邀者的性别是否有关,某调查机构进行了随机抽样调查,调查得到如下2×2列联表:
接受挑战 | 不接受挑战 | 合计 | |
男性 | 50 | 10 | 60 |
女性 | 25 | 15 | 40 |
合计 | 75 | 25 | 100 |
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
4.对于R上可导的任意函数f(x),若满足(x-2)f′(x)≥0,则必有( )
A. | f(0)+f(3)<2f(2) | B. | f(0)+f(3)≤2f(2) | C. | f(0)+f(3)≥2f(2) | D. | f(0)+f(3)>2f(2) |
2.已知直线x-2y+n=0与圆O:x2+y2=4交于A,B两点,若∠AOB=60°,则实数n的值为( )
A. | $\sqrt{15}$ | B. | $2\sqrt{15}$ | C. | $±\sqrt{15}$ | D. | $±2\sqrt{15}$ |