题目内容
【题目】在△ABC中,已知角A,B,C所对的边分别为a,b,c,且tanB=2,tanC=3.
(1)求角A的大小;
(2)若c=3,求b的长.
【答案】
(1)解:因为:tanB=2,tanC=3,tan(B+C)= = =﹣1,
因为:A=180°﹣B﹣C,
所以:tanA=tan(180°﹣(B+C))=﹣tan(B+C)=1
因为:A∈(0,π),
所以:A=
(2)解:因为:c=3,tanB=2,tanC=3.
所以:sinB= ,sinC= ,
所以由正弦定理可得:b= = =2
【解析】(1)利用两角和的正切函数公式表示出tan(B+C),把tanB和tanC的值代入即可求出tan(B+C)的值,根据三角形的内角和定理及诱导公式得到tanA等于﹣tan(B+C),进而得到tanA的值,结合A的范围即可得解;(2)由已知利用同角三角函数基本关系式可求sinB,sinC的值,进而利用正弦定理即可得解b的值.
【考点精析】通过灵活运用两角和与差的正切公式,掌握两角和与差的正切公式:即可以解答此题.
练习册系列答案
相关题目
【题目】已知某校5个学生期末考试数学成绩和总分年级排名如下表:
学生的编号 | 1 | 2 | 3 | 4 | 5 |
数学 | 115 | 112 | 93 | 125 | 145 |
年级排名 | 250 | 300 | 450 | 70 | 10 |
(1)通过大量事实证明发现,一个学生的数学成绩和总分年级排名具有很强的线性相关关系,在上述表格是正确的前提下,用表示数学成绩,用表示年级排名,求与的回归方程;(其中都取整数)
(2)若在本次考试中,预计数学分数为120分的学生年级排名大概是多少?
参考数据和公式:,其中,,其中