题目内容
如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB.
(1)求证:CE⊥平面PAD;
(2)若PA=AB=1,AD=3,CD=
,∠CDA=45°,求四棱锥P-ABCD的体积.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240514569944381.jpg)
(1)求证:CE⊥平面PAD;
(2)若PA=AB=1,AD=3,CD=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051456963384.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240514569944381.jpg)
(1) 见解析
(2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051457010386.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051457010386.png)
(1)证明:因为PA⊥平面ABCD,CE
平面ABCD,所以PA⊥CE,
因为AB⊥AD,CE∥AB,所以CE⊥AD,又PA
AD=A,所以CE⊥平面PAD
(2)解:由(1)可知CE⊥AD,在直角三角形ECD中,DE=CD
,CE=CD
.
又因为AB=CE=1,AB∥CE,所以四边形ABCE为矩形,所以
=
=
,又PA⊥平面ABCD,PA=1,所以四棱锥P-ABCD的体积等于![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051457135993.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051457025267.png)
因为AB⊥AD,CE∥AB,所以CE⊥AD,又PA
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051457057274.png)
(2)解:由(1)可知CE⊥AD,在直角三角形ECD中,DE=CD
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051457072484.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051457088574.png)
又因为AB=CE=1,AB∥CE,所以四边形ABCE为矩形,所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051457103751.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051457119823.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051457119619.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051457135993.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目