题目内容
【题目】已知函数,的最大值为.
(1)求的值;
(2)试推断方程是否有实数解?若有实数解,请求出它的解集.
【答案】(1);(2)无实数解
【解析】
(1)由题意,对函数f(x)=-x+lnx求导数,研究出函数在定义域上的单调性,判断出最大值,即可求出;
(2)由于函数的定义域是正实数集,故方程|2x(x-lnx)|=2lnx+x可变为,再分别研究方程两边对应函数的值域,即可作出判断.
(1)已知函数,则,
可得,
令,x=1,
当0<x<1时,f′(x)>0;当x>1时,f′(x)<0.
∴f(x)在(0,1)上是增函数,在(1,+∞)上是减函数,
∴;
(2)|2x(xlnx)|=2lnx+x可得,
由(1)知f(x)max=f(1)=1,即x+lnx≤1,
∴|xlnx|≥1,
又令,,
令g′(x)>0,得0<x<e;令g′(x)<0,得x>e,
∴g(x)的增区间为(0,e),减区间为(e,+∞),
∴,∴g(x)<1,
∴|xlnx|>g(x),即恒成立,
∴方程即方程|2x(xlnx)|=2lnx+x没有实数解.
练习册系列答案
相关题目