ÌâÄ¿ÄÚÈÝ
4£®Ä³Êй涨£¬¸ßÖÐѧÉúÈýÄêÔÚУÆÚ¼ä²Î¼Ó²»ÉÙÓÚ80СʱµÄÉçÇø·þÎñ²ÅºÏ¸ñ£®½ÌÓý²¿ÃÅÔÚÈ«ÊÐËæ»ú³éÈ¡200λѧÉú²Î¼ÓÉçÇø·þÎñµÄÊý¾Ý£¬°´Ê±¼ä¶Î[75£¬80£©£¬[80£¬85£©£¬[85£¬90£©£¬[90£¬95£©£¬[95£¬100]£¨µ¥Î»£ºÐ¡Ê±£©½øÐÐͳ¼Æ£¬ÆäƵÂÊ·Ö²¼Ö±·½Í¼ÈçͼËùʾ£®£¨1£©Çó³éÈ¡µÄ200λѧÉúÖУ¬²Î¼ÓÉçÇø·þÎñʱ¼ä²»ÉÙÓÚ90СʱµÄѧÉúÈËÊý£¬²¢¹À¼Æ´ÓÈ«ÊиßÖÐѧÉúÖÐÈÎÒâÑ¡È¡Ò»ÈË£¬Æä²Î¼ÓÉçÇø·þÎñʱ¼ä²»ÉÙÓÚ90СʱµÄ¸ÅÂÊ£»
£¨2£©´ÓÈ«ÊиßÖÐѧÉú£¨ÈËÊýºÜ¶à£©ÖÐÈÎÒâÑ¡È¡3λѧÉú£¬¼Ç¦ÎΪ3λѧÉúÖвμÓÉçÇø·þÎñʱ¼ä²»ÉÙÓÚ90СʱµÄÈËÊý£®ÊÔÇóËæ»ú±äÁ¿¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍûE¦Î£®
·ÖÎö £¨1£©ÏÈÇó³ö·ûºÏÌõ¼þµÄѧÉúµÄÈËÊý£¬´Ó¶øÇó³ö²Î¼ÓÉçÇø·þÎñʱ¼ä²»ÉÙÓÚ90СʱµÄ¸ÅÂʹÀ¼Æ£»
£¨2£©Ëæ»ú±äÁ¿¦ÎµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬´úÈ빫ʽÇó³öÏà¶ÔÓ¦µÄ¸ÅÂÊ£¬ÁгöËæ»ú±äÁ¿¦ÎµÄ·Ö²¼ÁУ¬´Ó¶øÇó³öÆÚÍûÖµ£®
½â´ð ½â£º£¨1£©¸ù¾ÝÌâÒ⣬²Î¼ÓÉçÇø·þÎñʱ¼äÔÚʱ¼ä¶Î[90£¬95£©Ð¡Ê±µÄѧÉúÈËÊýΪ60£¨ÈË£©£¬
²Î¼ÓÉçÇø·þÎñʱ¼äÔÚʱ¼ä¶Î[95£¬100]СʱµÄѧÉúÈËÊýΪ20ÏÈÇó³ö£¨ÈË£©£®
ËùÒÔ³éÈ¡µÄ200λѧÉúÖУ¬²Î¼ÓÉçÇø·þÎñʱ¼ä²»ÉÙÓÚ90СʱµÄѧÉúÈËÊýΪ80ÈË£®
ËùÒÔ´ÓÈ«ÊиßÖÐѧÉúÖÐÈÎÒâÑ¡È¡Ò»ÈË£¬
Æä²Î¼ÓÉçÇø·þÎñʱ¼ä²»ÉÙÓÚ90СʱµÄ¸ÅÂʹÀ¼ÆΪ$P=\frac{60+20}{200}=\frac{80}{200}=\frac{2}{5}$£®
£¨2£©ÓÉ£¨¢ñ£©¿ÉÖª£¬´ÓÈ«ÊиßÖÐÉúÖÐÈÎÒâÑ¡È¡1ÈË£¬
Æä²Î¼ÓÉçÇø·þÎñʱ¼ä²»ÉÙÓÚ90СʱµÄ¸ÅÂÊΪ$\frac{2}{5}$£®
ÓÉÒÑÖªµÃ£¬Ëæ»ú±äÁ¿¦ÎµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£®
ËùÒÔ$P£¨¦Î=0£©=C_3^0{£¨\frac{2}{5}£©^0}•{£¨\frac{3}{5}£©^3}=\frac{27}{125}$£»
$P£¨¦Î=1£©=C_3^1{£¨\frac{2}{5}£©^1}•{£¨\frac{3}{5}£©^2}=\frac{54}{125}$£»
$P£¨¦Î=2£©=C_3^2{£¨\frac{2}{5}£©^2}•{£¨\frac{3}{5}£©^1}=\frac{36}{125}$£»
$P£¨¦Î=3£©=C_3^3{£¨\frac{2}{5}£©^3}•{£¨\frac{3}{5}£©^0}=\frac{8}{125}$£®
Ëæ»ú±äÁ¿¦ÎµÄ·Ö²¼ÁÐΪ£º
¦Î | 0 | 1 | 2 | 3 |
P | $\frac{27}{125}$ | $\frac{54}{125}$ | $\frac{36}{125}$ | $\frac{8}{125}$ |
µãÆÀ ±¾Ì⿼²éÁËÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁкÍÊýѧÆÚÍûÖµ£¬ÊÇÒ»µÀÖеµÌ⣮
A£® | 63 | B£® | 127 | C£® | 217-1 | D£® | 220-1 |
A£® | Ô² | B£® | °ëÔ² | C£® | Ö±Ïß | D£® | ÉäÏß |
A£® | ¦Ð | B£® | $\frac{5¦Ð}{4}$ | C£® | $\frac{{\sqrt{3}¦Ð}}{3}$ | D£® | $\frac{{2\sqrt{3}}}{9}{¦Ð^2}$ |