题目内容
15.若函数f(x)=x3-tx2+3x在区间[1,4]上单调递减,则实数t的取值范围是( )A. | (-∞,$\frac{51}{8}$] | B. | (-∞,3] | C. | [$\frac{51}{8}$,+∞) | D. | [3,+∞) |
分析 由题意可得f′(x)≤0即3x2-2tx+3≤0在[1,4]上恒成立,由二次函数的性质可得不等式组的解集.
解答 解:∵函数f(x)=x3-tx2+3x,
∴f′(x)=3x2-2tx+3,
若函数f(x)=x3-tx2+3x在区间[1,4]上单调递减,
则f′(x)≤0即3x2-2tx+3≤0在[1,4]上恒成立,
∴t≥$\frac{3}{2}$(x+$\frac{1}{x}$)在[1,4]上恒成立,
令y=$\frac{3}{2}$(x+$\frac{1}{x}$),由对勾函数的图象和性质可得:函数在[1,4]为增函数,
当x=4时,函数取最大值$\frac{51}{8}$,
∴t≥$\frac{51}{8}$,
即实数t的取值范围是[$\frac{51}{8}$,+∞),
故选:C
点评 本题主要考查函数的单调性和导数符号间的关系,二次函数的性质,属于中档题.
练习册系列答案
相关题目
3.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的一条渐近线与直线l:2x+y+2=0垂直,则此双曲线的离心率是( )
A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{5}}{2}$ | C. | $\sqrt{5}$ | D. | 4$\sqrt{3}$ |
10.设x,y满足约束条件$\left\{\begin{array}{l}{3x-y-2≤0}\\{x-y≥0}\\{x≥0,y≥0}\end{array}\right.$,若目标函数z=ax+by(a>0,b>0)的最大值为4,则ab的取值范围是( )
A. | (0,4) | B. | (0,4] | C. | [4,+∞) | D. | (4,+∞) |
20.若抛物线y=ax2的准线方程为y=-1,则实数a的值是( )
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | -$\frac{1}{4}$ | D. | -$\frac{1}{2}$ |
7.f(x)=$\sqrt{3}$sinωx+cosωx,x∈R,f(α)=-2,f(β)=0,|α-β|的最小值为$\frac{3π}{4}$,则正数ω=( )
A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{4}{3}$ | D. | $\frac{3}{2}$ |
4.在△ABC中,角A、B、C的对边分别为a、b、c,已知A=$\frac{π}{6}$,a=1,b=2,则c=( )
A. | $1或\sqrt{3}$ | B. | $2或\sqrt{3}$ | C. | $\sqrt{3}-1$ | D. | $\sqrt{3}$ |