题目内容
【题目】学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数y与听课时间x(单位:分钟)之间的关系满足如图所示的图象,当x∈(0,12]时,图象是二次函数图象的一部分,其中顶点A(10,80),过点B(12,78);当x∈[12,40]时,图象是线段BC,其中C(40,50).根据专家研究,当注意力指数大于62时,学习效果最佳.
(1)试求y=f(x)的函数关系式;
(2)教师在什么时段内安排内核心内容,能使得学生学习效果最佳?请说明理由.
【答案】
(1)解:当x∈(0,12]时,
设f(x)=a(x﹣10)2+80
过点(12,78)代入得,
则
当x∈[12,40]时,
设y=kx+b,过点B(12,78)、C(40,50)
得 ,即y=﹣x+90
则的函数关系式为
(2)解:由题意得, 或
得4<x≤12或12<x<28,
4<x<28
则老师就在x∈(4,28)时段内安排核心内容,能使得学生学习效果最佳
【解析】(1)当x∈(0,12]时,设f(x)=a(x﹣10)2+80,把点(12,78)代入能求出解析式;当x∈[12,40]时,设y=kx+b,把点B(12,78)、C(40,50)代入能求出解析式.(2)由(1)的解析式,结合题设条件,列出不等式组,能求出老师就在什么时段内安排核心内容,能使得学生学习效果最佳
【考点精析】通过灵活运用函数的最值及其几何意义,掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值即可以解答此题.
【题目】海南大学某餐饮中心为了解新生的饮食习惯,在全校新生中进行了抽样调查,调查结果如下表所示:
喜欢甜品 | 不喜欢甜品 | 合计 | |
南方学生 | 60 | 20 | 80 |
北方学生 | 10 | 10 | 20 |
合计 | 70 | 30 | 100 |
(Ⅰ)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
(Ⅱ)已知在被调查的北方学生中有5名中文系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.
附:,K2=
P(K2≥k0) | 0.10 | 0.05 | 0.010 |
k0 | 2.706 | 3.841 | 6.635 |