题目内容
【题目】用数学归纳法证明“1+2+3+…+(2n+1)=(n+1)(2n+1)”时,由n=k(k>1)等式成立,推证n=k+1,左边应增加的项为 .
【答案】(2k+2)+(2k+3)
【解析】解:∵用数学归纳法证明等式1+2+3+…+(2n+1)=(n+1)(2n+1)时,
当n=1左边所得的项是1+2+3;
假设n=k时,命题成立,左端为1+2+3+…+(2k+1);
则当n=k+1时,左端为1+2+3+…+(2k+1)+(2k+2)+[2(k+1)+1],
∴从“k→k+1”需增添的项是(2k+2)+(2k+3).
所以答案是:(2k+2)+(2k+3).
练习册系列答案
相关题目