题目内容
已知数列满足=1,.(1)证明是等比数列,并求的通项公式;(2)证明:.
解析
在等比数列中,已知,则该数列前7项之积为
在直角坐标系中,以原点为极点,x轴的正半辐为极轴建立极坐标系,已知曲线,过点P(-2,-4)的直线 的参数方程为:(t为参数),直线与曲线C相交于M,N两点.(Ⅰ)写出曲线C的直角坐标方程和直线的普通方程;(Ⅱ)若成等比数列,求a的值
设数列{an}的各项均为正数.若对任意的n∈N*,存在k∈N*,使得=an·an+2k成立,则称数列{an}为“Jk型”数列.(1)若数列{an}是“J2型”数列,且a2=8,a8=1,求a2n;(2)若数列{an}既是“J3型”数列,又是“J4型”数列,证明:数列{an}是等比数列.
已知数列的首项,且 .(1)求数列的通项公式;(2)求数列的前项和.
(13分)(2011•重庆)设{an}是公比为正数的等比数列a1=2,a3=a2+4.(Ⅰ)求{an}的通项公式;(Ⅱ)设{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.
在数列中,已知,,.(1)求数列的通项公式;(2)设数列,求的前项和.
已知数列{an}为等差数列,a3=5,a7=13,数列{bn}的前n项和为Sn,且有Sn=2bn-1,(1)求{an},{bn}的通项公式.(2)若cn=anbn,{cn}的前n项和为Tn,求Tn.
设数列{an}的首项不为零,前n项和为Sn,且对任意的r,tN*,都有.(1)求数列{an}的通项公式(用a1表示);(2)设a1=1,b1=3,,求证:数列为等比数列;(3)在(2)的条件下,求.