题目内容

9.已知函数f(x)=2sinxcosx+1.
(1)求f($\frac{π}{4}$)的值及f(x)的最小正周期;
(2)求f(x)的最大值和最小值.

分析 (1)由二倍角的正弦函数公式化简解析式可得f(x)=sin2x+1,代入x=$\frac{π}{4}$即可求值.利用周期公式即可得解.
(2)由正弦函数的性质可得:sin2x∈[-1,1],从而可求f(x)的最大值为2,最小值为0.

解答 解:(1)∵f(x)=2sinxcosx+1=sin2x+1,
∴f($\frac{π}{4}$)=sin(2×$\frac{π}{4}$)+1=1+1=2,
f(x)的最小正周期T=$\frac{2π}{2}$=π.
(2)∵sin2x∈[-1,1],
∴f(x)=sin2x+1∈[0,2],
∴f(x)的最大值为2,最小值为0.

点评 本题主要考查了二倍角的正弦函数公式,周期公式,正弦函数的图象和性质等知识的应用,属于基本知识的考查.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网