题目内容
【题目】太极图是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种相互转化,相互统一的和谐美.定义:能够将圆O的周长和面积同时等分成两部分的函数称为圆煌一个“太极函数”下列有关说法中:
①对圆O:x2+y2=1的所有非常数函数的太极函数中,一定不能为偶函数;
②函数f(x)=sinx+1是圆O:x2+(y﹣1)2=1的一个太极函数;
③存在圆O,使得f(x)= 是圆O的太极函数;
④直线(m+1)x﹣(2m+1)y﹣1=0所对应的函数一定是圆O:(x﹣2)2+(y﹣1)2=R2(R>0)的太极函数.
所有正确说法的序号是 .
【答案】②④
【解析】解:对①显然错误,如图
对②,点(0,1)均为两曲线的对称中心,且f(x)=sinx+1能把圆x2+(y﹣1)2=1一分为二,正确;
对③,函数为奇函数f(x)= =1+ ,当x→0(x>0)时,
f(x)→+∞,
当x→+∞时,f(x)→1,[f(x)>1],函数递减;
当x→0(x<0)时,f(x)→﹣∞,
当x→﹣∞时,f(x)→﹣1,[f(x)<﹣1],
函数f(x)关于(0,0)中心对称,有三条渐近线y=±1,x=0,
可知,函数的对称中心为间断点,故不存在圆使得满足题干条件.③不正确;
对于④直线(m+1)x﹣(2m+1)y﹣1=0恒过定点(2,1)的直线,经过圆的圆心,满足题意.④正确;
故所有正确的是②④.
所以答案是:②④.
【考点精析】掌握函数的图象和命题的真假判断与应用是解答本题的根本,需要知道函数的图像是由直角坐标系中的一系列点组成;图像上每一点坐标(x,y)代表了函数的一对对应值,他的横坐标x表示自变量的某个值,纵坐标y表示与它对应的函数值;两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.