题目内容

【题目】已知函数f(x)=x﹣ ﹣2alnx(a∈R) (Ⅰ)若函数f(x)在x=2时取极值,求实数a的值;
(Ⅱ)若f(x)≥0对任意x∈[1,+∞)恒成立,求实数a的取值范围.

【答案】解:(Ⅰ)∵ , 依题意有:f'(2)=0,即
解得:
检验:当 时,

此时:函数f(x)在(1,2)上单调递减,在(2,+∞)上单调递增,
满足在x=2时取得极值
综上:
(Ⅱ)依题意有:fmin(x,)≥0

令f′(x)=0,
得:x1=2a﹣1,x2=1,
①当2a﹣1≤1即a≤1时,
函数f'(x)≥0在[1,+∞)恒成立,
则f(x)在[1,+∞)单调递增,
于是fmin(x)=f(1)=2﹣2a≥0,
解得:a≤1;
②当2a﹣1>1即a>1时,
函数f(x)在[1,2a﹣1]单调递减,在[2a﹣1,+∞)单调递增,
于是fmin(x)=f(2a﹣1)<f(1)=2﹣2a<0,不合题意,
此时:a∈Φ;
综上所述:实数a的取值范围是a≤1
【解析】(Ⅰ)由 ,依题意有:f'(2)=0,即 ,通过检验满足在x=2时取得极值.(Ⅱ)依题意有:fmin(x,)≥0从而 ,令f′(x)=0,得:x1=2a﹣1,x2=1,通过讨论①当2a﹣1≤1即a≤1时②当2a﹣1>1即a>1时,进而求出a的范围.
【考点精析】本题主要考查了函数的极值与导数的相关知识点,需要掌握求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网