题目内容
【题目】已知函数f(x)=x﹣ ﹣2alnx(a∈R) (Ⅰ)若函数f(x)在x=2时取极值,求实数a的值;
(Ⅱ)若f(x)≥0对任意x∈[1,+∞)恒成立,求实数a的取值范围.
【答案】解:(Ⅰ)∵ , 依题意有:f'(2)=0,即 ,
解得:
检验:当 时,
此时:函数f(x)在(1,2)上单调递减,在(2,+∞)上单调递增,
满足在x=2时取得极值
综上: .
(Ⅱ)依题意有:fmin(x,)≥0
,
令f′(x)=0,
得:x1=2a﹣1,x2=1,
①当2a﹣1≤1即a≤1时,
函数f'(x)≥0在[1,+∞)恒成立,
则f(x)在[1,+∞)单调递增,
于是fmin(x)=f(1)=2﹣2a≥0,
解得:a≤1;
②当2a﹣1>1即a>1时,
函数f(x)在[1,2a﹣1]单调递减,在[2a﹣1,+∞)单调递增,
于是fmin(x)=f(2a﹣1)<f(1)=2﹣2a<0,不合题意,
此时:a∈Φ;
综上所述:实数a的取值范围是a≤1
【解析】(Ⅰ)由 ,依题意有:f'(2)=0,即 ,通过检验满足在x=2时取得极值.(Ⅱ)依题意有:fmin(x,)≥0从而 ,令f′(x)=0,得:x1=2a﹣1,x2=1,通过讨论①当2a﹣1≤1即a≤1时②当2a﹣1>1即a>1时,进而求出a的范围.
【考点精析】本题主要考查了函数的极值与导数的相关知识点,需要掌握求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值才能正确解答此题.
【题目】为大力提倡“厉行节约,反对浪费”,某市通过随机询问100名性别不同的居民是否做到“光盘”行动,得到如下列联表及附表: 经计算:
做不到“光盘”行动 | 做到“光盘”行动 | |
男 | 45 | 10 |
女 | 30 | 15 |
P(X2≥x0) | 0.10 | 0.05 | 0.025 |
x0 | 2.706 | 3.841 | 5.024 |
参照附表,得到的正确结论是( )
A.在犯错误的概率不超过1%的前提下,认为“该市民能否做到‘光盘’行动与性别有关”
B.在犯错误的概率不超过1%的前提下,认为“该市民能否做到‘光盘’行动与性别无关”
C.有90%以上的把握认为“该市民能否做到‘光盘’行动与性别有关”
D.有90%以上的把握认为“该市民能否做到‘光盘’行动与性别无关”