题目内容
已知Sn为数列{an}的前n项和,且Sn=2an+n2-3n-2(n=1,2,3…).令bn=an-2n(n=1,2,3…).
(Ⅰ)求证:数列{bn}为等比数列;
(Ⅱ)令cn=
,记Tn=c1c2+2c2c3+22c3c4+…+2n-1cncn+1,比较Tn与
的大小.
(Ⅰ)求证:数列{bn}为等比数列;
(Ⅱ)令cn=
| 1 |
| bn+1 |
| 1 |
| 6 |
分析:(Ⅰ)根据Sn与an的固有关系an=
,由已知可得an+1=2an-2n+2,转化构造数列{bn}.研究其性质.
(Ⅱ)由(Ⅰ)bn=an-2n=2n 得 , cn=
=
,∴2 n-1 cncn+1=
×(
-
),Tn可求其表达式,再进行证明.
|
(Ⅱ)由(Ⅰ)bn=an-2n=2n 得 , cn=
| 1 |
| bn+1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2n+1+1 |
解答:解:(Ⅰ)∵Sn=2an+n2-3n-2,
∴Sn+1=2an+1+(n+1)2-3(n+1)-2.
∴an+1=2an-2n+2,
∴an+1-2(n+1)=2(an-2n).
∴bn=an-2n是以2为公比的等比数列
(Ⅱ)a1=S1=2a1-4,∴a1=4,∴a1-2×1=4-2=2.
∴an-2n=2n,
∴an=2n+2n.
bn=an-2n=2n cn=
=
Tn=c1c2+2c2c3+22c3c4+…+2n-1cncn+1
=
×
+2×
×
+…+2n-1×
×
=
×(
-
)+
×(
-
)+…+
×(
-
)
=
×(
-
)
=
-
∴Tn<
∴Sn+1=2an+1+(n+1)2-3(n+1)-2.
∴an+1=2an-2n+2,
∴an+1-2(n+1)=2(an-2n).
∴bn=an-2n是以2为公比的等比数列
(Ⅱ)a1=S1=2a1-4,∴a1=4,∴a1-2×1=4-2=2.
∴an-2n=2n,
∴an=2n+2n.
bn=an-2n=2n cn=
| 1 |
| bn+1 |
| 1 |
| 2n+1 |
=
| 1 |
| 21+1 |
| 1 |
| 22+1 |
| 1 |
| 22+1 |
| 1 |
| 23+1 |
| 1 |
| 2n+1 |
| 1 |
| 2n+1+1 |
=
| 1 |
| 2 |
| 1 |
| 21+1 |
| 1 |
| 22+1 |
| 1 |
| 2 |
| 1 |
| 22+1 |
| 1 |
| 23+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2n+1+1 |
=
| 1 |
| 2 |
| 1 |
| 21+1 |
| 1 |
| 2n+1+1 |
=
| 1 |
| 6 |
| 1 |
| 2n+2+2 |
| 1 |
| 6 |
点评:本题考查等比数列的判定,通项公式、数列求和,不等式的证明,考查转化构造、计算能力.
练习册系列答案
相关题目