题目内容
已知Sn为数列{an}的前n项和,且Sn=2an+n2-3n-2(n∈N*)
(I)求证:数列{an-2n}为等比数列;
(II)设bn=an•cosnπ,求数列{bn}的前n项和Pn.
(I)求证:数列{an-2n}为等比数列;
(II)设bn=an•cosnπ,求数列{bn}的前n项和Pn.
分析:(I)将Sn=2an+n2-3n-2利用数列中an,Sn的关系进行转化构造出新数列{an-2n},再据其性质证明.
(Ⅱ)将(I)中所求的an代入bn,分组求和法求和.
(Ⅱ)将(I)中所求的an代入bn,分组求和法求和.
解答:解:(I)∵Sn=2an+n2-3n-2①∴Sn+1=2an+1+(n+1)2-3(n+1)-2
两式相减,得an+1=2an+1-2an+2n-2,∴an+1=2an-2n+2
故an+1-2(n+1)=2(an-2n),又在①式中令n=1得a1=4,∴a1-2≠0∴
=2,
∴{an-2n}为等比数列
(II)由(I)知:an-2n=2•2n-1,∴an=2n+2n且cosnπ=(-1)n
当n为偶数时,设n=2k(k∈N*)
则Pn=b1+b2+…+bn=(b1+b3+…+b2k-1)+(b2+b4+…+b2k)={-(2+2×1)-(23+2×3)-…-[22k-1+2(2k-1)]}+[(22+2×2)+(24+2×4)+…+(22k+2k)]=-(2+23+…+22k-1)-2[1+3+…+(2k-1)]+(22+24+…+22k)+2(2+4+…+2k)=-(2-22+23-24+…+22k-1-22k)+2[-1+2-3+4-…-(2k-1)+2k]=-
+2k=
(2n-1)+n
当n为奇数时,设n=2k-1(k∈N*),同理可得Pn=-
-[(2k-1)+1]=-
-(n+1)=-
-n-
综上所述,Pn=
两式相减,得an+1=2an+1-2an+2n-2,∴an+1=2an-2n+2
故an+1-2(n+1)=2(an-2n),又在①式中令n=1得a1=4,∴a1-2≠0∴
an+1-2(n+1) |
an-2n |
∴{an-2n}为等比数列
(II)由(I)知:an-2n=2•2n-1,∴an=2n+2n且cosnπ=(-1)n
当n为偶数时,设n=2k(k∈N*)
则Pn=b1+b2+…+bn=(b1+b3+…+b2k-1)+(b2+b4+…+b2k)={-(2+2×1)-(23+2×3)-…-[22k-1+2(2k-1)]}+[(22+2×2)+(24+2×4)+…+(22k+2k)]=-(2+23+…+22k-1)-2[1+3+…+(2k-1)]+(22+24+…+22k)+2(2+4+…+2k)=-(2-22+23-24+…+22k-1-22k)+2[-1+2-3+4-…-(2k-1)+2k]=-
2[1-(-2)2k] |
1-(-2) |
2 |
3 |
当n为奇数时,设n=2k-1(k∈N*),同理可得Pn=-
2(2k-1)+1+2 |
3 |
2n+1+2 |
3 |
2n+1 |
3 |
5 |
3 |
综上所述,Pn=
|
点评:本题考查等比数列的判断、数列求和,转化,计算的能力.
练习册系列答案
相关题目