题目内容
已知Sn为数列{an}的前n项和,且Sn=2an+n2-3n-2,n=1,2,3….(Ⅰ)求证:数列{an-2n}为等比数列;
(Ⅱ)设bn=an•cosnπ,求数列{bn}的前n项和Pn;
(Ⅲ)设cn=
1 |
an-n |
37 |
44 |
分析:(1)根据Sn=2an+n2-3n-2可得到Sn+1的表达式Sn+1=2an+1+(n+1)2-3(n+1)-2,两式相减可得到an+1=2an-2n+2整理可得an+1-2(n+1)=2(an-2n),即数列{an-2n}为等比数列.
(2)先根据数列{an-2n}为等比数列求出an的表达式,再对n分奇偶数讨论可求出数列{bn}的前n项和Pn.
(3)将an的表达式代入到cn=
中求出数列{cn}的通项公式,进而可验证当n=1时满足Tn<
,然后当n≥2时对Tn=
+
+
+…+
进行放缩可得到Tn<
+
+
+…+
=
-
<
<
得证.
(2)先根据数列{an-2n}为等比数列求出an的表达式,再对n分奇偶数讨论可求出数列{bn}的前n项和Pn.
(3)将an的表达式代入到cn=
1 |
an-n |
37 |
44 |
1 |
21+1 |
1 |
22+2 |
1 |
23+3 |
1 |
2n+n |
1 |
3 |
1 |
22 |
1 |
23 |
1 |
2n |
5 |
6 |
1 |
2n |
5 |
6 |
37 |
44 |
解答:解:(Ⅰ)∵Sn=2an+n2-3n-2,
∴Sn+1=2an+1+(n+1)2-3(n+1)-2.
∴an+1=2an-2n+2,∴an+1-2(n+1)=2(an-2n).
∴{an-2n}是以2为公比的等比数列;
(Ⅱ)a1=S1=2a1-4,∴a1=4,∴a1-2×1=4-2=2.
∴an-2n=2n,∴an=2n+2n.
当n为偶数时,Pn=b1+b2+b3+…+bn
=(b1+b3+…+bn-1)+(b2+b4+…+bn)
=-(2+2×1)-(23+2×3)-…-[2n-1+2(n-1)]+(22+2×2)+(24+2×4)+…+(2n+2×n)
=
-
+n=
•(2n-1)+n;
当n为奇数时,Pn=-
-(n+1).
综上,Pn=
;
(Ⅲ)cn=
=
.
当n=1时,T1=
<
当n≥2时,Tn=
+
+
+…+
<
+
+
+…+
=
+
=
+
-
=
-
<
<
综上可知:任意n∈N,Tn<
.
∴Sn+1=2an+1+(n+1)2-3(n+1)-2.
∴an+1=2an-2n+2,∴an+1-2(n+1)=2(an-2n).
∴{an-2n}是以2为公比的等比数列;
(Ⅱ)a1=S1=2a1-4,∴a1=4,∴a1-2×1=4-2=2.
∴an-2n=2n,∴an=2n+2n.
当n为偶数时,Pn=b1+b2+b3+…+bn
=(b1+b3+…+bn-1)+(b2+b4+…+bn)
=-(2+2×1)-(23+2×3)-…-[2n-1+2(n-1)]+(22+2×2)+(24+2×4)+…+(2n+2×n)
=
4(1-2n) |
1-22 |
2(1-2n) |
1-22 |
2 |
3 |
当n为奇数时,Pn=-
2n+1+2 |
3 |
综上,Pn=
|
(Ⅲ)cn=
1 |
an-n |
1 |
2n+n |
当n=1时,T1=
1 |
3 |
37 |
44 |
当n≥2时,Tn=
1 |
21+1 |
1 |
22+2 |
1 |
23+3 |
1 |
2n+n |
<
1 |
3 |
1 |
22 |
1 |
23 |
1 |
2n |
=
1 |
3 |
| ||||
1-
|
1 |
3 |
1 |
2 |
1 |
2n |
5 |
6 |
1 |
2n |
5 |
6 |
37 |
44 |
综上可知:任意n∈N,Tn<
37 |
44 |
点评:本题主要考查构造等比数列求通项公式、求数列的前n项和.考查数列前n项和的不等式的证明.
练习册系列答案
相关题目