题目内容
【题目】如图,ABCD为矩形,点A、E、B、F共面,和均为等腰直角三角形,且若平面⊥平面
(Ⅰ)证明:平面平面ADF
(Ⅱ)问在线段EC上是否存在一点G,使得BG∥平面若存在,求出此时三棱锥G一ABE与三棱锥的体积之比,若不存在,请说明理由.
【答案】(Ⅰ)证明见解析;(Ⅱ)存在,体积比为.
【解析】
(1)由题意得:由ABCD为矩形可得到BC⊥AB,再由平面⊥平面可得到BC⊥AF,所以AF⊥平面BCF,再根据面面垂直的判断定理可得到平面平面ADF;
(2)通过已知条件可得到平面BCE∥平面ADF,延长EB到点H,使得BH =AF,得到ABHF是平行四边形,从而可得到HFDC是平行四边形,即有CH∥DF.,过点B作CH的平行线,交EC于点G,此点G为所求的G点即存在,由EG=和,可得到即;
(Ⅰ)∵ABCD为矩形,∴BC⊥AB,
又∵平面ABCD⊥平面AEBF,BC平面ABCD,平面ABCD∩平面AEBF=AB,
∴BC⊥平面AEBF,
又∵AF平面AEBF,∴BC⊥AF,
∵∠AFB=90°,即AF⊥BF,且BC、BF平面BCF,BC∩BF=B,
∴AF⊥平面BCF,
又∵AF平面ADF,∴平面ADF平面BCF.
(Ⅱ)∵BC∥AD,AD平面ADF,∴BC∥平面ADF.
∵和均为等腰直角三角形,且90°,
∴∠FAB=∠ABE=45°,∴AF∥BE,又AF平面ADF,∴BE∥平面ADF,
∵BC∩BE=B,∴平面BCE∥平面ADF.
延长EB到点H,使得BH =AF,又BC AD,连CH、HF,易证ABHF是平行四边形,
∴HFABCD,∴HFDC是平行四边形,∴CH∥DF.
过点B作CH的平行线,交EC于点G,即BG∥CH∥DF,(DF平面CDF)
∴BG∥平面CDF,即此点G为所求的G点,
如图:
又BE=,∴EG=,又,
,
所以
【题目】在全面抗击新冠肺炎疫情这一特殊时期,我市教育局提出“停课不停学”的口号,鼓励学生线上学习.某校数学教师为了调查高三学生数学成绩与线上学习时间之间的相关关系,对高三年级随机选取45名学生进行跟踪问卷,其中每周线上学习数学时间不少于5小时的有19人,余下的人中,在检测考试中数学平均成绩不少于120分的有10人,统计成绩后得到如下列联表:
分数不少于120分 | 分数不足120分 | 合计 | |
线上学习时间不少于5小时 | 4 | 19 | |
线上学习时间不足5小时 | 10 | ||
合计 | 45 |
(1)请完成上面列联表;并判断是否有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”;
(2)在上述样本中从分数不少于120分的学生中,按照分层抽样的方法,抽到线上学习时间不少于5小时和线上学习时间不足5小时的学生共5名,若在这5名学生中随机抽取2人,求至少1人每周线上学习时间不足5小时的概率.
(下面的临界值表供参考)
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式其中)