题目内容

已知函数f(x)=
x+3
x

(1)写出此函数的定义域和值域;
(2)证明函数在(0,+∞)为单调递减函数;
(3)试判断并证明函数y=(x-3)f(x)的奇偶性.
(1)函数f(x)的定义域为{x|x≠0}.
f(x)=1+
3
x
,∴值域为{y|y≠1}.
(2)证明:设0<x1<x2
则:f(x2)-f(x1)=(1+
3
x2
)-(1+
3
x1
)=
3
x2
-
3
x1
=
3(x1-x2)
x1x2

∵0<x1<x2,∴x1•x2>0,x1-x2<0,
∴f(x2)-f(x1)<0,即f(x2)<f(x1),
∴函数在(0,+∞)上为单调递减函数.
(3)函数定义域关于原点对称,
g(x)=(x-3)f(x)=
x2-9
x

g(-x)=
x2-9
-x
=-g(x)

∴此函数为奇函数.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网