题目内容
如图,四棱锥P-ABCD中,,,和都是等边三角形.(Ⅰ)证明:;(Ⅱ)求二面角A-PD-C的大小.
(Ⅰ)见解析(Ⅱ)
解析
如图1,在四棱锥中,底面,面为正方形,为侧棱上一点,为上一点.该四棱锥的正(主)视图和侧(左)视图如图2所示.(Ⅰ)求四面体的体积;(Ⅱ)证明:∥平面;(Ⅲ)证明:平面平面.
如图所示,矩形中,⊥平面,,为上的点,且⊥平面.(1)求证:⊥平面;(2)求三棱锥的体积.
如图, 三棱柱ABC-A1B1C1中, 侧棱A1A⊥底面ABC,且各棱长均相等. D, E, F分别为棱AB, BC, A1C1的中点. (Ⅰ) 证明EF//平面A1CD; (Ⅱ) 证明平面A1CD⊥平面A1ABB1; (Ⅲ) 求直线BC与平面A1CD所成角的正弦值.
如图,在边长为1的等边三角形中,分别是边上的点,,是的中点,与交于点,将沿折起,得到如图所示的三棱锥,其中.(1) 证明://平面;(2) 证明:平面;(3) 当时,求三棱锥的体积.
如图,在四棱柱(I)当正视方向与向量的方向相同时,画出四棱锥的正视图(要求标出尺寸,并写出演算过程);(II)若M为PA的中点,求证:求二面角(III)求三棱锥的体积.
如图,已知为平行四边形所在平面外一点,为的中点,求证:平面.
在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,且AC=AD=CD=DE=2,AB=1.(Ⅰ)请在线段CE上找到点F的位置,使得恰有直线BF∥平面ACD,并证明这一事实;(Ⅱ)求多面体ABCDE的体积.
如图,在多面体中,四边形是正方形,,,且,二面角是直二面角(1)求证:平面;(2)求证:平面。