题目内容
【题目】已知数列{ an}的前n项和为Sn , 且满足:a1=1,a2=2,Sn+1=an+2﹣an+1(n∈N*),则Sn= .
【答案】2n﹣1
【解析】解:Sn+1=an+2﹣an+1(n∈N*),则Sn+1=Sn+2﹣Sn+1﹣(Sn+1﹣Sn),化为:Sn+2+1=2(Sn+1+1).
由a1=1,a2=2,可得:S2+1=2(S1+1),
因此Sn+1+1=2(Sn+1)对n∈N*都成立.
∴数列{Sn+1}是等比数列,首项为2,公比为2.
∴Sn+1=2n,即Sn=2n﹣1,
所以答案是:2n﹣1.
【考点精析】解答此题的关键在于理解数列的通项公式的相关知识,掌握如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.
练习册系列答案
相关题目
【题目】福利彩票“双色球”中红色球的号码由编号为01,02,…,33的33个个体组成,小明利用下面的随机数表选取6组数作为6个红色球的编号,选取方法是从随机数表第1行的第7列数字开始由左到右依次读取数据,则选出来的第3个红色球的编号为( )
49 54 43 54 15 37 17 93 39 78 87 35 20 96 43 84 17 34 91 64 |
57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 |
A.06
B.17
C.20
D.24