ÌâÄ¿ÄÚÈÝ
£¨2013•³çÃ÷ÏضþÄ££©ÒÑÖªÊýÁÐ{an}ÊǸ÷Ïî¾ù²»Îª0µÄµÈ²îÊýÁУ¬¹«²îΪd£¬SnΪÆäÇ°nÏîºÍ£¬ÇÒÂú×ãan2=S2n-1£¬n¡ÊN*£®ÊýÁÐ{bn}Âú×ãbn=
£¬n¡ÊN*£¬TnΪÊýÁÐ{bn}µÄÇ°nÏîºÍ£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽanºÍÊýÁÐ{bn}µÄÇ°nÏîºÍTn£»
£¨2£©Èô¶ÔÈÎÒâµÄn¡ÊN*£¬²»µÈʽ¦ËTn£¼n+8•(-1)nºã³ÉÁ¢£¬ÇóʵÊý¦ËµÄÈ¡Öµ·¶Î§£»
£¨3£©ÊÇ·ñ´æÔÚÕýÕûÊým£¬n£¨1£¼m£¼n£©£¬Ê¹µÃT1£¬Tm£¬Tn³ÉµÈ±ÈÊýÁУ¿Èô´æÔÚ£¬Çó³öËùÓÐm£¬nµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
1 | an•an+1 |
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽanºÍÊýÁÐ{bn}µÄÇ°nÏîºÍTn£»
£¨2£©Èô¶ÔÈÎÒâµÄn¡ÊN*£¬²»µÈʽ¦ËTn£¼n+8•(-1)nºã³ÉÁ¢£¬ÇóʵÊý¦ËµÄÈ¡Öµ·¶Î§£»
£¨3£©ÊÇ·ñ´æÔÚÕýÕûÊým£¬n£¨1£¼m£¼n£©£¬Ê¹µÃT1£¬Tm£¬Tn³ÉµÈ±ÈÊýÁУ¿Èô´æÔÚ£¬Çó³öËùÓÐm£¬nµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÓÉan2=S2n-1£¬n¡ÊN*£®·Ö±ðÁîn=1ºÍ2£¬¿É·Ö±ðÇó³öÊýÁеÄÊ×ÏîºÍ¹«²î£¬´úÈë¿ÉµÃÊýÁÐ{an}µÄͨÏʽ£¬ÓÉbn=
£¬n¡ÊN*£¬¿ÉÓÉÁÑÏîÏàÏû·¨µÃµ½ÊýÁÐ{bn}µÄÇ°nÏîºÍTn£»
£¨2£©ÓÉ£¨1£©ÖÐTnµÄ±í´ïʽ£¬È»ºó·ÖnΪÆæÊýºÍnΪżÊýÁ½ÖÖÇé¿ö£¬·Ö±ðÇó³öʵÊý¦ËµÄÈ¡Öµ·¶Î§£¬×ۺϷÖÀàÌÖÂÛ½á¹û£¬¿ÉµÃ´ð°¸£®
£¨3£©ÓÉ£¨1£©ÖÐTnµÄ±í´ïʽ£¬½áºÏµÈ±ÈÊýÁеÄÐÔÖÊ£¬¿É¹¹Ôì¹ØÓÚm£¬nµÄ·½³Ì£¬¸ù¾Ý1£¼m£¼n¼°m£¬n¾ùΪÕûÊý£¬¿ÉµÃ´ð°¸£®
1 |
an•an+1 |
£¨2£©ÓÉ£¨1£©ÖÐTnµÄ±í´ïʽ£¬È»ºó·ÖnΪÆæÊýºÍnΪżÊýÁ½ÖÖÇé¿ö£¬·Ö±ðÇó³öʵÊý¦ËµÄÈ¡Öµ·¶Î§£¬×ۺϷÖÀàÌÖÂÛ½á¹û£¬¿ÉµÃ´ð°¸£®
£¨3£©ÓÉ£¨1£©ÖÐTnµÄ±í´ïʽ£¬½áºÏµÈ±ÈÊýÁеÄÐÔÖÊ£¬¿É¹¹Ôì¹ØÓÚm£¬nµÄ·½³Ì£¬¸ù¾Ý1£¼m£¼n¼°m£¬n¾ùΪÕûÊý£¬¿ÉµÃ´ð°¸£®
½â´ð£º½â£º£¨1£©ÔÚan2=S2n-1ÖУ¬Áîn=1£¬n=2£¬
µÃ
£¬¼´
£¨2·Ö£©
½âµÃa1=1£¬d=2£¬£¨3·Ö£©
¡àan=2n-1£®
¡ßbn=
=
=
£¨
-
£©£¬
¡àTn=
£¨1-
+
-
+¡+
-
£©=
£®£¨5·Ö£©
£¨2£©¢Ùµ±nΪżÊýʱ£¬ÒªÊ¹²»µÈʽ¦ËTn£¼n+8•£¨-1£©nºã³ÉÁ¢£¬¼´Ðè²»µÈʽ¦Ë£¼
=2n+
+17ºã³ÉÁ¢£®£¨6·Ö£©¡ß2n+
¡Ý8£¬µÈºÅÔÚn=2ʱȡµÃ£®
¡à´Ëʱ¦ËÐèÂú×ã¦Ë£¼25£®£¨7·Ö£©
¢Úµ±nΪÆæÊýʱ£¬ÒªÊ¹²»µÈʽ¦ËTn£¼n+8•£¨-1£©nºã³ÉÁ¢£¬¼´Ðè²»µÈʽ¦Ë£¼
=2n-
-15ºã³ÉÁ¢£®£¨8·Ö£©
¡ß2n-
ÊÇËænµÄÔö´ó¶øÔö´ó£¬
¡àn=1ʱ£¬2n-
È¡µÃ×îСֵ-6£®
¡à´Ëʱ¦ËÐèÂú×ã¦Ë£¼-21£®£¨9·Ö£©
×ۺϢ١¢¢Ú¿ÉµÃ¦ËµÄÈ¡Öµ·¶Î§ÊǦˣ¼-21£®£¨10·Ö£©
£¨3£©T1=
£¬Tm=
£¬Tn=
£¬
ÈôT1£¬Tm£¬Tn³ÉµÈ±ÈÊýÁУ¬Ôò£¨
£©2=
£¨
£©£¬
¼´
=
£®£¨11·Ö£©
ÓÉ
=
£¬¿ÉµÃ
=
£¾0£¬
¼´-2m2+4m+1£¾0£¬£¨12·Ö£©
¡à1-
£¼m£¼1+
£®£¨13·Ö£©
ÓÖm¡ÊN£¬ÇÒm£¾1£¬ËùÒÔm=2£¬´Ëʱn=12£®
Òò´Ë£¬µ±ÇÒ½öµ±m=2£¬n=12ʱ£¬ÊýÁÐ {Tn}ÖеÄT1£¬Tm£¬Tn³ÉµÈ±ÈÊýÁУ®£¨14·Ö£©
µÃ
|
|
½âµÃa1=1£¬d=2£¬£¨3·Ö£©
¡àan=2n-1£®
¡ßbn=
1 |
an•an+1 |
1 |
(2n-1)•(2n+1) |
1 |
2 |
1 |
(2n-1) |
1 |
(2n+1) |
¡àTn=
1 |
2 |
1 |
3 |
1 |
3 |
1 |
5 |
1 |
(2n-1) |
1 |
(2n+1) |
n |
2n+1 |
£¨2£©¢Ùµ±nΪżÊýʱ£¬ÒªÊ¹²»µÈʽ¦ËTn£¼n+8•£¨-1£©nºã³ÉÁ¢£¬¼´Ðè²»µÈʽ¦Ë£¼
(n+8)(2n+1) |
n |
8 |
n |
8 |
n |
¡à´Ëʱ¦ËÐèÂú×ã¦Ë£¼25£®£¨7·Ö£©
¢Úµ±nΪÆæÊýʱ£¬ÒªÊ¹²»µÈʽ¦ËTn£¼n+8•£¨-1£©nºã³ÉÁ¢£¬¼´Ðè²»µÈʽ¦Ë£¼
(n-8)(2n+1) |
n |
8 |
n |
¡ß2n-
8 |
n |
¡àn=1ʱ£¬2n-
8 |
n |
¡à´Ëʱ¦ËÐèÂú×ã¦Ë£¼-21£®£¨9·Ö£©
×ۺϢ١¢¢Ú¿ÉµÃ¦ËµÄÈ¡Öµ·¶Î§ÊǦˣ¼-21£®£¨10·Ö£©
£¨3£©T1=
1 |
3 |
m |
2m+1 |
n |
2n+1 |
ÈôT1£¬Tm£¬Tn³ÉµÈ±ÈÊýÁУ¬Ôò£¨
m |
2m+1 |
1 |
3 |
n |
2n+1 |
¼´
m2 |
4m2+4m+1 |
n |
6n+3 |
ÓÉ
m2 |
4m2+4m+1 |
n |
6n+3 |
3 |
n |
-2m2+4m+1 |
m2 |
¼´-2m2+4m+1£¾0£¬£¨12·Ö£©
¡à1-
| ||
2 |
| ||
2 |
ÓÖm¡ÊN£¬ÇÒm£¾1£¬ËùÒÔm=2£¬´Ëʱn=12£®
Òò´Ë£¬µ±ÇÒ½öµ±m=2£¬n=12ʱ£¬ÊýÁÐ {Tn}ÖеÄT1£¬Tm£¬Tn³ÉµÈ±ÈÊýÁУ®£¨14·Ö£©
µãÆÀ£º±¾Ð¡ÌâÖ÷Òª¿¼²éµÈ²î¡¢µÈ±ÈÊýÁеĶ¨Ò塢ͨÏî¡¢ÇóºÍ¡¢¶ÔÊýµÄÔËËã¡¢Ö±Ïß·½³ÌÓë²»µÈʽµÈ֪ʶ£¬¿¼²é»¯¹é¡¢×ª»¯¡¢·½³ÌµÄÊýѧ˼Ïë·½·¨£¬ÒÔ¼°³éÏó¸ÅÀ¨ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦¡¢´´ÐÂÄÜÁ¦ºÍ×ÛºÏÓ¦ÓÃÄÜÁ¦
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿