题目内容

【题目】海南省椰树集团引进德国净水设备的使用年限(年)和所需要的维修费用y(千元)的几组统计数据如表:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0


(1)请根据上表提供的数据,用最小二乘法求出 关于x的线性回归方程
(2)我们把中(1)的线性回归方程记作模型一,观察散点图发现该组数据也可以用函数模型 =c1ln(c2x)拟合,记作模型二.经计算模型二的相关指数R2=0.64,
①请说明R2=0.64这一数据在线性回归模型中的实际意义.
②计算模型一中的R2的值(精确到0.01),通过数据说明,两种模型中哪种模型的拟合效果好.
参考公式和数值:用最小工乘法求线性回归方程系数公式 = .R2=1﹣ =0.651,(2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3)

【答案】
(1)解:∵ ,且 ,∴

∴回归直线为


(2)解:①R2=0.64表明“净水设备的使用年限解释了64%的维修费用的变化”,或者说“净水设备的维修费用

的差异有64%是由净水设备的使用年限引起的”

=0.96R2

取值越大,意味着残差平方和越小,也就是说模型的拟合效果越好.

由于模型一中的相关指数R2=0.96大于0.64,说明模型一的拟合效果好


【解析】(1)先做出两组数据的平均数,把平均数和条件中所给的两组数据代入求解b的公式,做出b的值,再求出a的值,写出回归直线的方程.(2)①R2=0.64表明“净水设备的使用年限解释了64%的维修费用的变化”,或者说“净水设备的维修费用的差异有64%是由净水设备的使用年限引起的”②R2取值越大,意味着残差平方和越小,也就是说模型的拟合效果越好.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网