题目内容
【题目】在平面直角坐标系中,曲线
的参数方程为
(其中
为参数),以原点
为极点,以
轴非负半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(Ⅰ)求曲线的普通方程与曲线
的直角坐标方程;
(Ⅱ)设点,
分别是曲线
,
上两动点且
,求
面积的最大值.
【答案】(Ⅰ),
;(Ⅱ)6
【解析】
(Ⅰ)根据题意,消参化简得曲线的普通方程,对
的极坐标方程,两边同乘
,利用及坐标公式化简可得曲线
的直角坐标方程;
(Ⅱ)根据题意,设极坐标,则
,分别代入极坐标方程中,求得
的值,
,根据三角函数有界性,即可求解最值.
(Ⅰ)由条件知消去参数得到曲线
的普通方程为
.
因可化为
,又
,
,代入得
,于是曲线
的直角坐标方程为
.
(Ⅱ)由条件知曲线,
均关于
轴对称,而且外切于原点
,
不妨设,则
,
因曲线的极坐标方程为
,
所以,
,
于是,
所以当时,
面积的最大值为6.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】某商场经销某商品,根据以往资料统计,顾客采用的付款期数的分布列为
1 | 2 | 3 | 4 | 5 | |
P | 0.4 | 0.2 | 0.2 | 0.1 | 0.1 |
商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,X表示经销一件该商品的利润.
(1)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率;
(2)求X的分布列及期望.
【题目】某生物研究所为研发一种新疫苗,在200只小白鼠身上进行科研对比实验,得到如下统计数据:
未感染病毒 | 感染病毒 | 总计 | |
未注射疫苗 | 30 | ||
注射疫苗 | 70 | ||
总计 | 100 | 100 | 200 |
现从未注射疫苗的小白鼠中任取1只,取到“感染病毒”的小白鼠的概率为.
(Ⅰ)能否有的把握认为注射此种疫苗有效?
(Ⅱ)在未注射疫苗且未感染病毒与注射疫苗且感染病毒的小白鼠中,分别抽取3只进行病例分析,然后从这6只小白鼠中随机抽取2只对注射疫苗情况进行核实,求抽到的2只均是注射疫苗且感染病毒的小白鼠的概率.
附:,
,
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】为了提高生产线的运行效率,工厂对生产线的设备进行了技术改造.为了对比技术改造后的效果,采集了生产线的技术改造前后各20次连续正常运行的时间长度(单位:天)数据,并绘制了如下茎叶图:
(Ⅰ)(1)设所采集的40个连续正常运行时间的中位数,并将连续正常运行时间超过
和不超过
的次数填入下面的列联表:
超过 | 不超过 | |
改造前 | ||
改造后 |
试写出,
,
,
的值;
(2)根据(1)中的列联表,能否有的把握认为生产线技术改造前后的连续正常运行时间有差异?
附:,
0.050> | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(Ⅱ)工厂的生产线的运行需要进行维护.工厂对生产线的生产维护费用包括正常维护费、保障维护费两种对生产线设定维护周期为天(即从开工运行到第
天(
)进行维护.生产线在一个生产周期内设置几个维护周期,每个维护周期相互独立.在一个维护周期内,若生产线能连续运行,则不会产生保障维护费;若生产线不能连续运行,则产生保障维护费.经测算,正常维护费为0.5万元
次;保障维护费第一次为0.2万元
周期,此后每增加一次则保障维护费增加0.2万元.现制定生产线一个生产周期(以120天计)内的维护方案:
,
,2,3,4.以生产线在技术改造后一个维护周期内能连续正常运行的频率作为概率,求一个生产周期内生产维护费的分布列及期望值.