题目内容
已知抛物线
过点
.
(I)求抛物线的方程;
(II)已知圆心在
轴上的圆
过点
,且圆
在点
的切线恰是抛物线在点
的切线,求圆
的方程;
(Ⅲ)如图,点
为
轴上一点,点
是点
关于原点的对称点,过点
作一条直线与抛物线交于
两点,若
,证明:
.![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240010109854330.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001010533818.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001010548620.png)
(I)求抛物线的方程;
(II)已知圆心在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001010564310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001010580313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001010548620.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001010580313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001010642399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001010642399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001010580313.png)
(Ⅲ)如图,点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001010704739.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001010564310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001010782333.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001010798289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001010798289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001010829423.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001010954593.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001010970844.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240010109854330.png)
(I)
;(II)
;(Ⅲ)见解析。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001011001521.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001011032746.png)
试题分析:(I)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001011001521.png)
(II)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001011048456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001011063792.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001011001521.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001010642399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001011110516.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001011126195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001010642399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001011141633.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001011157515.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001011172365.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001011188427.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001011126195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001011219546.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240010112351311.png)
圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001010580313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001011032746.png)
(Ⅲ)设直线AB的方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001011282632.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001011001521.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001011313731.png)
设A、B两点的坐标分别是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001011328547.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001011328683.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001011344602.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001010954593.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001011391948.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001011391485.png)
由①、②可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001011406563.png)
又点Q是点P关于原点的对称点,故点Q的坐标是(0,-m),从而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001011438749.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240010114532059.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240010114691318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240010114841523.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240010115001079.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001011516850.png)
点评::研究直线与抛物线的综合问题,通常的思路是:转化为研究方程组的解的问题,利用直线方程与抛物线方程所组成的方程组消去一个变量后,将交点问题(包括公共点个数、与交点坐标有关的问题)转化为一元二次方程根的问题,结合根与系数的关系及判别式解决问题。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目