题目内容
【题目】某超市销售某种商品,据统计,该该商品每日的销售量(单位:千克)与销售价格(单位:元/千克,其中)满足:当时,(,为常数);当时,,已知当销售价格为6元/千克时,每日售出该商品170千克.
(1)求,的值,并确定关于的函数解析式;
(2)若该商品的销售成本为3元/千克,试确定销售价格的值,使店铺每日销售该商品所获利润最大.
【答案】(1),;(2)销售价格为5元/千克时,每日利润最大所获利润,最大
【解析】
(1)由题意,代入数据求出,;从而求出函数的解析式;
(2)由于是分段函数,讨论其各部分的最大值,从而求函数的最大值点.
(1)因为时,;又时,,
∴,解得.
故每日的销售量.
(2)由(1)知,当时,每日销售利润
∴.
当时,单调递增;
当时,单调递减;
∴是函数在上的唯一极大值点,
∴;
当时,每日销售利润,
∴.
∵,∴销售价格为5元/千克时,每日利润最大.
【题目】秉承“绿水青山就是金山银山”的发展理念,某市环保部门通过制定评分标准,先对本市的企业进行评估,评出四个等级,并根据等级给予相应的奖惩,如下表所示:
评估得分 | ||||
评定等级 | 不合格 | 合格 | 良好 | 优秀 |
奖励(万元) |
环保部门对企业评估完成后,随机抽取了家企业的评估得分(分)为样本,得到如下频率分布表:
评估得分 | ||||||
频率 |
其中、表示模糊不清的两个数字,但知道样本评估得分的平均数是.
(1)现从样本外的数百个企业评估得分中随机抽取个,若以样本中频率为概率,求该家企业的奖励不少于万元的概率;
(2)现从样本“不合格”、“合格”、“良好”三个等级中,按分层抽样的方法抽取家企业,再从这家企业随机抽取家,求这两家企业所获奖励之和不少于万元的概率.
【题目】某单位准备购买三台设备,型号分别为已知这三台设备均使用同一种易耗品,提供设备的商家规定:可以在购买设备的同时购买该易耗品,每件易耗品的价格为100元,也可以在设备使用过程中,随时单独购买易耗品,每件易耗品的价格为200元.为了决策在购买设备时应购买的易耗品的件数.该单位调查了这三种型号的设备各60台,调査每台设备在一个月中使用的易耗品的件数,并得到统计表如下所示.
每台设备一个月中使用的易耗品的件数 | 6 | 7 | 8 | |
型号A | 30 | 30 | 0 | |
频数 | 型号B | 20 | 30 | 10 |
型号C | 0 | 45 | 15 |
将调查的每种型号的设备的频率视为概率,各台设备在易耗品的使用上相互独立.
(1)求该单位一个月中三台设备使用的易耗品总数超过21件的概率;
(2)以该单位一个月购买易耗品所需总费用的期望值为决策依据,该单位在购买设备时应同时购买20件还是21件易耗品?