题目内容
设
,函数
,若对任意的
,都有
成立,则实数
的取值范围为 .
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221503761398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232215037921033.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221503808607.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221503824710.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221503855283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221503870539.png)
解:求导函数,可得g′(x)=1-
,x∈[1,e],g′(x)≥0,
∴g(x)max=g(e)=e-1,f′(x)=1-
,令f'(x)=0,
∵a>0,x=±
当0<a<1,f(x)在[1,e]上单调增,
∴f(x)min=f(1)=1+a≥e-1,∴a≥e-2;
当1≤a≤e2,f(x)在[1,
]上单调减,f(x)在[
,e]上单调增,
∴f(x)min=f( a )=2
≥e-1 恒成立;
当a>e2时 f(x)在[1,e]上单调减,
∴f(x)min=f(e)=e+
≥e-1 恒成立
综上a≥e-2
故答案为:[e-2,+∞)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221503902314.png)
∴g(x)max=g(e)=e-1,f′(x)=1-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221503917454.png)
∵a>0,x=±
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221503933339.png)
当0<a<1,f(x)在[1,e]上单调增,
∴f(x)min=f(1)=1+a≥e-1,∴a≥e-2;
当1≤a≤e2,f(x)在[1,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221503933339.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221503933339.png)
∴f(x)min=f( a )=2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221503933339.png)
当a>e2时 f(x)在[1,e]上单调减,
∴f(x)min=f(e)=e+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823221504026373.png)
综上a≥e-2
故答案为:[e-2,+∞)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目