ÌâÄ¿ÄÚÈÝ
17£®Èçͼ£¬ÒÑÖªÈýÀâÖùABC---A1B1C1µÄ²àÀâÓëµ×Ãæ´¹Ö±£¬AA1=AB=AC=1£¬AB¡ÍAC£¬M£¬N·Ö±ðΪCC1£¬BCµÄÖе㣬µãPΪֱÏßA1B1ÉÏÒ»µã£¬ÇÒÂú×ã$\overrightarrow{{A_1}P}=¦Ë\overrightarrow{{A_1}{B_1}}$£¬£¨1£©¦Ë=$\frac{1}{2}$ʱ£¬ÇóÖ±ÏßPNÓëƽÃæABCËù³É½Ç¦ÈµÄÕýÏÒÖµ
£¨2£©ÈôƽÃæPMNÓëƽÃæABCËù³ÉÈñ¶þÃæ½ÇΪ450£¬Çó¦ËµÄÖµ£®
·ÖÎö £¨1£©ÒÔAB£¬AC£¬AA1·Ö±ðΪx£¬y£¬zÖᣬ½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵA-xyz£¬Çó³ö$\overrightarrow{PN}$=£¨0£¬$\frac{1}{2}$£¬-1£©£¬Æ½ÃæABCµÄÒ»¸ö·¨ÏòÁ¿£¬È»ºóÀûÓÃÖ±ÏßÓëƽÃæËù³É½ÇµÄ¼ÆË㹫ʽÇó½â¼´¿É£®
£¨2£©È¡Æ½ÃæABCµÄÒ»¸ö·¨ÏòÁ¿Îª£¬Çó³öƽÃæPMNµÄÒ»¸ö·¨ÏòÁ¿£¬ÀûÓÃÏòÁ¿µÄ¼Ð½Ç¹«Ê½Çó³ö¦Ë£®
½â´ð ½â£º£¨1£©½¨Á¢ÒÔAµãΪ¿Õ¼ä×ø±êϵԵ㣬AB£¬AC£¬AA1ËùÔÚÖ±ÏßΪxÖᣬyÖᣬzÖᣬA£¨0£¬0£¬0£©£¬B£¨1£¬0£¬0£©£¬C£¨0£¬1£¬0£©£¬A1£¨0£¬0£¬1£©£¬B1£¨1£¬0£¬1£©£¬C1£¨ 0£¬1£¬1£©£¬M£¨0£¬1£¬$\frac{1}{2}$£©£¬N£¨$\frac{1}{2}$£¬$\frac{1}{2}$£¬0£©
¦Ë=$\frac{1}{2}$£¬P£¨$\frac{1}{2}$£¬0£¬1£©£¬$\overrightarrow{PN}$=£¨0£¬$\frac{1}{2}$£¬-1£©
ƽÃæABC·¨ÏòÁ¿Îª$\overrightarrow{A{A}_{1}}$=£¨0£¬0£¬1£©£¬¡à$sin¦È=|{cos£¼\overrightarrow{PN}\;£¬\;\overrightarrow{A{A_1}}£¾}|=\frac{{2\sqrt{5}}}{5}$
£¨2£©ÉèP£¨¦Ë£¬0£¬1£©£¬$\overrightarrow{MN}$=£¨$\frac{1}{2}$£¬-$\frac{1}{2}$£¬-$\frac{1}{2}$£©£¬$\overrightarrow{PN}$=£¨$\frac{1}{2}$-¦Ë£¬$\frac{1}{2}$£¬-1£©£¬
ÉèƽÃæPMN·¨ÏòÁ¿Îª$\overrightarrow n=£¨x\;£¬\;y\;£¬\;z£©$£¬Ôò$\left\{{\begin{array}{l}{\frac{1}{2}x-\frac{1}{2}y-\frac{1}{2}z=0}\\{£¨\frac{1}{2}-¦Ë£©x+\frac{1}{2}y-z=0}\end{array}}\right.$£¬
È¡$\overrightarrow n=£¨3\;£¬\;1+2¦Ë\;£¬\;2-2¦Ë£©$
ƽÃæABC·¨ÏòÁ¿Îª£¨0£¬0£¬1£©£¬
¡à$\frac{{\sqrt{2}}}{2}=\frac{{|{2-2¦Ë}|}}{{1-\sqrt{{3^2}+{{£¨1+2¦Ë£©}^2}+{{£¨2-2¦Ë£©}^2}}}}=\frac{{|{2-2¦Ë}|}}{{\sqrt{14-4¦Ë+8{¦Ë^2}}}}$£¬
¡à$¦Ë=-\frac{1}{2}$£®
µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëƽÃæËù³É½ÇµÄÓ¦Ó㬶þÃæ½ÇµÄÏòÁ¿Ç󷨣¬¿¼²é¿Õ¼äÏëÏóÄÜÁ¦ÒÔ¼°¼ÆËãÄÜÁ¦£®
£¨x£¬y£© | £¨n£¬n£© | £¨m£¬n£© | £¨n£¬m£© |
f£¨x£¬y£© | n | m-n | m+n |
A£® | a2£¾b2 | B£® | ac£¾bc | C£® | |a|£¾|b| | D£® | 2a£¾2b |
A£® | µÚÒ»ÏóÏÞ | B£® | µÚ¶þÏóÏÞ | C£® | µÚÈýÏóÏÞ | D£® | µÚËÄÏóÏÞ |