题目内容
【题目】如图,矩形ABCD中,,,点F、E分别是BC、CD的中点,现沿AE将折起,使点D至点M的位置,且.
(1)证明:平面MEF;
(2)求二面角的大小.
【答案】(1)详见解析;(2).
【解析】
(1)证明,得到平面MEF.
(2)以F为原点,FE为x轴,FA为y轴建立如图的空间坐标系,面AFE的一个法向量为,面AME的一个法向量为,计算向量夹角到答案.
(1)证明:由题设知:,又,,AM,面AMF,
∴面AMF,面AMF,∴,
在矩形ABCD中,,,E、F为中点,
∴,,,
∴,∴,
又∵面MEF,∴面MEF.
(2)以F为原点,FE为x轴,FA为y轴建立如图的空间坐标系,
在中,过M作于N,,,,
∴,,
∴、、、,
面AFE的一个法向量为,设面AME的一个法向量为,、,
由,即,令,则,,
∴,∴,,
二面角为.
【题目】2019年12月以来,湖北省武汉市持续开展流感及相关疾病监测,发现多起病毒性肺炎病例,均诊断为病毒性肺炎/肺部感染,后被命名为新型冠状病毒肺炎(CoronaVirusDisease2019,COVID—19),简称“新冠肺炎”.下图是2020年1月15日至1月24日累计确诊人数随时间变化的散点图.
为了预测在未釆取强力措施下,后期的累计确诊人数,建立了累计确诊人数y与时间变量t的两个回归模型,根据1月15日至1月24日的数据(时间变量t的值依次1,2,…,10)建立模型和.
(1)根据散点图判断,与哪一个适宜作为累计确诊人数y与时间变量t的回归方程类型?(给出判断即可,不必说明理由)
(2根据(1)的判断结果及附表中数据,建立y关于x的回归方程;
(3)以下是1月25日至1月29日累计确诊人数的真实数据,根据(2)的结果回答下列问题:
时间 | 1月25日 | 1月26日 | 1月27日 | 1月28日 | 1月29日 |
累计确诊人数的真实数据 | 1975 | 2744 | 4515 | 5974 | 7111 |
(ⅰ)当1月25日至1月27日这3天的误差(模型预测数据与真实数据差值的绝对值与真实数据的比值)都小于0.1则认为模型可靠,请判断(2)的回归方程是否可靠?
(ⅱ)2020年1月24日在人民政府的强力领导下,全国人民共同采取了强力的预防“新冠肺炎”的措施,若采取措施5天后,真实数据明显低于预测数据,则认为防护措施有效,请判断预防措施是否有效?
附:对于一组数据(,,……,,其回归直线的斜率和截距的最小二乘估计分别为,.
参考数据:其中,.
5.5 | 390 | 19 | 385 | 7640 | 31525 | 154700 | 100 | 150 | 225 | 338 | 507 |
【题目】近年来,国资委.党委高度重视扶贫开发工作,坚决贯彻落实中央扶贫工作重大决策部署,在各个贫困县全力推进定点扶贫各项工作,取得了积极成效,某贫困县为了响应国家精准扶贫的号召,特地承包了一块土地,已知土地的使用面积以及相应的管理时间的关系如下表所示:
土地使用面积(单位:亩) | |||||
管理时间(单位:月) |
并调查了某村名村民参与管理的意愿,得到的部分数据如下表所示:
愿意参与管理 | 不愿意参与管理 | |
男性村民 | ||
女性村民 |
求出相关系数的大小,并判断管理时间与土地使用面积是否线性相关?
若以该村的村民的性别与参与管理意愿的情况估计贫困县的情况,则从该贫困县中任取人,记取到不愿意参与管理的男性村民的人数为,求的分布列及数学期望.
参考公式:,参考数据:,,