题目内容

【题目】设数列{an}的前n项和为Sn , a1=1,an= +2(n﹣1)(n∈N*).
(1)求证:数列{an}为等差数列,并分别写出an和Sn关于n的表达式;
(2)设数列 的前n项和为Tn , 证明:

【答案】
(1)证明:由an= +2(n﹣1),得Sn=nan﹣2n(n﹣1)(n∈N*).

当n≥2时,an=Sn﹣Sn1=nan﹣(n﹣1)an1﹣4(n﹣1),即an﹣an1=4,

∴数列{an}是以a1=1为首项,4为公差的等差数列.

于是,an=4n﹣3,Sn= =2n2﹣n(n∈N*


(2)证明:Tn= + + +…+

= + + +…+

= [(1﹣ )+( )+( )+…+( )]

= (1﹣ )= =

又由题意知Tn单调递增,故Tn≥T1=

于是, ≤Tn


【解析】(1)由an= +2(n﹣1),得Sn=nan﹣2n(n﹣1)(n∈N*),由此能证明数列{an}为等差数列,并能求出an和Sn关于n的表达式.(2)由 =( ),利用裂项求和法能证明 ≤Tn
【考点精析】解答此题的关键在于理解数列的前n项和的相关知识,掌握数列{an}的前n项和sn与通项an的关系,以及对数列的通项公式的理解,了解如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网